
SENG SENG 637637
Dependability  Reliability Dependability  Reliability & & Dependability, Reliability Dependability, Reliability & & 
Testing of Software Testing of Software 
SystemsSystems

Ch tCh t 11 O iO iChapterChapter 1: 1: OverviewOverview

Department of Electrical & Computer Engineering, University of Calgary

B.H. Far （far@ucalgary.ca）

far@ucalgary.ca 1

http://www.enel.ucalgary.ca/People/far/Lectures/SENG637/



ContentsContentsContentsContents

Shorter version:Shorter version:
 How to avoid these?How to avoid these?

far@ucalgary.ca 2



ContentsContentsContentsContents

Longer version:Longer version:gg
 What is this course about?What is this course about?
 What factors affect software What factors affect software 

iiquality?quality?
 What What is software reliability?is software reliability?
 WhatWhat is software reliabilityis software reliability What What is software reliability is software reliability 

engineeringengineering??
 What is software What is software reliability reliability 

engineering engineering process?process?

far@ucalgary.ca 3



About This Course About This Course About This Course …About This Course …
 The topics discussed include:

 Concepts and relationships
 Analytical models and supporting tools
 Techniques for software reliability improvement, 

including: 
 Fault avoidance, fault elimination, fault tolerance
 Error detection and repair 

F il d i d i Failure detection and retraction 
 Risk management

far@ucalgary.ca 4



Terminology & ScopeTerminology & ScopeTerminology & ScopeTerminology & Scope
TreatsTreats

Failures
Faults
Errors

Availability
Reliability

AttributesAttributes

Reliability
Safety
Confidentiality
Integrity
Maintainability

DependabilityDependability

MeansMeans
Fault prevention
Fault tolerance
F l l

a ta ab ty

The ability of a The ability of a 
system to deliver system to deliver 
service that canservice that can

ModelsModels

Fault removal
Fault forecasting

service that can service that can 
justifiably be justifiably be 
trusted.trusted. Reliability Block Diagram

Fault Tree model

far@ucalgary.ca 5

Reliability Graph



Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

Software ReliabilitySoftware ReliabilitySoftware ReliabilitySoftware Reliability

ModelModel ProcessProcessConceptConcept

Single Single Multiple Multiple 

ModelModel ProcessProcess

SRE SRE 

ConceptConcept

ReliabilityReliability
FailureFailure
ModelModel

FailureFailure
ModelModel

ProcessProcessAvailabilityAvailability
Failure rateFailure rate
MTTFMTTF
Failure densityFailure density

ReliabilityReliability
GrowthGrowth
ModelModel

Failure densityFailure density
Etc.Etc.

far@ucalgary.ca 6

ModelModel



Software TestingSoftware TestingSoftware TestingSoftware Testing

Software TestingSoftware TestingSoftware TestingSoftware Testing

TechniquesTechniques ProcessProcess

CertificationCertification
TestTest

ReliabilityReliability
GrowthGrowth

qq

SRE SRE 
PP

Other:Other:
BlackBlack boxbox TestTest GrowthGrowth

TestTest
ProcessProcessBlackBlack--boxbox

WhiteWhite--boxbox
AlphaAlpha
BetaBetaBetaBeta
BigBig--bangbang
StressStress
Etc.Etc.

far@ucalgary.ca 7



Question to AskQuestion to AskQuestion to AskQuestion to Ask
 Do I really need to take this course?

A d d ! Answer depend on you!
 Take this course if you want to avoid these in your 

career as a software designer tester and qualitycareer as a software designer, tester and quality 
controller:

far@ucalgary.ca 8

Bug Fix



At The End At The End At The End …At The End …
 What is software reliability engineering (SRE)?
 Why SRE is important? How does it affect software quality?
 What are the main factors that affect the reliability of software?
 Is SRE equivalent to software testing? What makes SRE different from 

software testing?
 How can one determine how often will the software fail? How can one determine how often will the software fail?
 How can one determine the current reliability of the software under 

development?
 How can one determine whether the product is reliable enough to be p g

released?
 Can SRE methodology be applied to the current ways of software 

development such as component-based and agile development?
 What are challenges and difficulties of applying SRE? What are challenges and difficulties of applying SRE?
 What are current research topics of SRE?

far@ucalgary.ca 9



Chapter Chapter 1 1 Section 1Section 1

F S ftF S ft Q lit tQ lit tFrom SoftwareFrom Software Quality toQuality to
Software Reliability Software Reliability EngineeringEngineering

far@ucalgary.ca 10



What is Quality?What is Quality?What is Quality?What is Quality?

 Quality popular view:Quality popular view:Q y p pQ y p p
– Something “good” but not 

quantifiable
– Something luxury and classy

Q li f i l iQ li f i l i Quality professional view:Quality professional view:
– Conformance to requirement 

(Crosby 1979)(Crosby, 1979)
– Fitness for use (Juran, 1970)

SENG521 far@ucalgary.ca 11



Quality: Various ViewsQuality: Various ViewsQuality: Various ViewsQuality: Various Views

A th tiA th ti D lD lAesthetic Aesthetic 
ViewView

Developer Developer 
ViewView

Customer Customer 
ViewViewViewView

far@ucalgary.ca 12



What is Software Quality?What is Software Quality?What is Software Quality?What is Software Quality?

 Conformance to requirementConformance to requirement
 The requirements are clearly stated and the 

product must conform to it
 Any deviation from the requirements is 

d d d f

What isWhat is
Specified?Specified?

What isWhat is
Specified?Specified?

regarded as a defect
 A good quality product contains fewer defects

 Fitness for useFitness for use
WhatWhat
SW SW 

Does?Does? WhatWhatWhatWhat
 Fit to user expectations: meet user’s needs
 A good quality product provides better user 

satisfaction

Does?Does?
useruser

Needs?Needs?
useruser

Needs?Needs?

BothBoth Dependable computing systemDependable computing systemBothBoth Dependable computing systemDependable computing system

SENG521 far@ucalgary.ca 13

Both Both  Dependable computing systemDependable computing systemBoth Both  Dependable computing systemDependable computing system



Definition: Software QualityDefinition: Software QualityDefinition: Software QualityDefinition: Software Quality

ISO 8402 definition 
of  QUALITY:
The totality of 
features andfeatures and 
characteristics of a 
product or a 
service that bear on 
its ability to satisfy 
stated or impliedstated or implied 
needs

ReliabilityReliability and MaintainabilityMaintainability are 
two major components of Quality

SENG521 far@ucalgary.ca 14

j p Q y



Quality Model: ISO 9126Quality Model: ISO 9126Quality Model: ISO 9126Quality Model: ISO 9126

Characteristics Characteristics AttributesAttributes

1. Functionality Suitability Interoperability Accuracy

Compliance Security 

2. Reliability Maturity Recoverability Fault tolerance 

Crash frequency

3. Usability Understandability Learnability Operability3. Us b y U de s a dab y ea ab y Ope ab y

4. Efficiency Time behaviour Resource behaviour

5. Maintainability Analyzability Stability Changeability

T biliTestability

6. Portability Adaptability Installability Conformance

Replacability

far@ucalgary.ca 15



Quality Model Quality Model –– StructureStructureQuality Model Quality Model –– StructureStructure

SW Q litSW Q litSW QualitySW Quality

QualityQuality QualityQuality QualityQuality

User oriented

Quality             
Factor 1
Quality             
Factor 1

Quality             
Factor 2
Quality             
Factor 2

Quality             
Factor n
Quality             
Factor n......

Quality 
Criterion           

1

Quality 
Criterion           

1

Quality 
Criterion         

m

Quality 
Criterion         

m
......

Quality       
Criterion                 

2

Quality       
Criterion                 

2

Quality  
Criterion             

3

Quality  
Criterion             

3Software oriented

MeasuresMeasures

far@ucalgary.ca



Example: Attribute ExpansionExample: Attribute ExpansionExample: Attribute ExpansionExample: Attribute Expansion
 Design by measurable Design by measurable 

objectives:objectives:
Quality objective

objectives:objectives:
Incremental design is 
evaluated to check whether Availability User friendlinessthe goal for each increment 
was achieved. 

y User friendliness

% of planned 
System uptime

Days on job to 
learn task supplied
By new system

Worst: 95%
Best: 99%

Worst: 7 days
Best: 1 day

far@ucalgary.ca 17



What Affects Quality?What Affects Quality?What Affects Quality?What Affects Quality?

SENG521 far@ucalgary.ca 18



What Affects What Affects Software Quality?Software Quality?What Affects What Affects Software Quality?Software Quality?

 Time:Time:
 Meeting the project 

deadline. 
 Reaching the market at 

Quality
g

the right time.
 Cost:Cost:

 Meeting the anticipated
Cost Time

 Meeting the anticipated 
project costs. 

 Quality (reliability):Quality (reliability):
W ki fi f th Working fine for the 
designated period on 
the designated system.

People Technology

far@ucalgary.ca 19



Quality vs  Project CostsQuality vs  Project CostsQuality vs. Project CostsQuality vs. Project Costs

Cost distribution for a typical software project

Integration
and test

Product
Design

Release

Programming

Design Programming Testing

Wh t i ith thi i t ?

SENG521 far@ucalgary.ca 20

What is wrong with this picture?



Total Cost DistributionTotal Cost DistributionTotal Cost DistributionTotal Cost Distribution

Maintenance is responsible for more that 60% of total cost 

Product Design

for a typical software project
Questions:Questions:

1) How1) How toto
Programming

1) How 1) How to to 
build quality build quality 
into a system?into a system?

Integration
Maintenance 2) How 2) How to to 

assess qualityassess qualityteg at o
and test

Developing better quality system will 

assess quality assess quality 
of a system?of a system?

SENG521 far@ucalgary.ca 21

contribute to lowering maintenance costs



1) How to Build Quality into a 1) How to Build Quality into a 
System?System?System?System?

 Developing better quality systems requires:  

 Establishing Quality Assurance (QA) Quality Assurance (QA) programs

 Establishing Reliability Engineering (SRE)Reliability Engineering (SRE)
processprocess

SENG521 far@ucalgary.ca 22



2) How to Assess Quality of a 2) How to Assess Quality of a 
System?System?System?System?

 Relevant to both pre-p
release and post-
release

Quality 
Assess
ment

 Pre-release: SRE, 
certification, 
standards ISO9001

 Post-release: 
l i lid ievaluation, validation, 

RAM

SENG521 far@ucalgary.ca 23



How Do We Assess Quality?How Do We Assess Quality?How Do We Assess Quality?How Do We Assess Quality?

 AdAd--hoc (trial hoc (trial ((
and error) and error) 
approach!approach!

 Systematic Systematic 
approachapproach

SENG521 far@ucalgary.ca 24



PrePre--release Qualityrelease QualityPrePre--release Qualityrelease Quality

 Software Facts:

inspection and 
testing

• About 20% of the software 
projects are canceled. (missed 
schedules, etc.)g

 Methods: 
 SRE

schedules, etc.)
• About 84% of software projects 

are incomplete when released 
(need patch, etc). SRE

 Certification
Standards

(need patch, etc). 
• Almost all of the software projects 

costs exceed initial estimations. 
(cost overrun) Standards 

ISO9001, 9126, 
25000

(cost overrun)

25000

SENG521 far@ucalgary.ca 25



Fatal Software ExamplesFatal Software ExamplesFatal Software ExamplesFatal Software Examples

Fatal software related incidents [Gage & McCormick 2004]Fatal software related incidents [Gage & McCormick 2004]
Date Casualties Detail 

2003 3 Software failure contributes of power outage across North-eastern 
U.S. and Canada. 

2001 5 Panamanian cancer patients die following overdoses of radiation, 
determined by the use of faulty software. 

2000 4 Crash of marine corps osprey tilt-rotor aircraft, partially blamed on 
software anomaly. 

1997 225 Radar that could have prevented Korean jet crash hobbled by 
software problem. 

1995 159 A i i li j t d di i t C li C l bi h i t1995 159 American airlines jet, descending into Cali, Columbia crashes into 
a mountain. A cause was that the software presented insufficient 
and conflicting information to the pilots, who got lost. 

1991 28 Software problem prevents Patriot missile battery from picking up 

far@ucalgary.ca 26

SCUD missile, which hits US Army barracks in Saudi Arabia. 



Cost of a Defect Cost of a Defect Cost of a Defect …Cost of a Defect …

Require- FieldDesign Functional SystemCodingments UseDesign Test
y
TestCoding

40 %
10 %

50 % Fault 
Origin

Fault 
Detection

10 %
25 %

50 %
3 % 5 % 7 %

20 KDM

Cost per 

6 KDM

12 KDM

1 KDM 1 KDM 1 KDM

Cost per 
Fault 

far@ucalgary.ca 27

1 KDM = 1,000 Deutsch Marks
CMU. Software Engineering Institute



A Central QuestionA Central QuestionA Central QuestionA Central Question
 In spite of having many development 

methodologies, central questions are:

1. Can we remove all bugs before release?
2 How often will the software fail?2. How often will the software fail?

far@ucalgary.ca 28



Two ExtremesTwo ExtremesTwo ExtremesTwo Extremes

 Craftsman SE: fast, cheap, buggy, p, ggy
 Cleanroom SE: slow, expensive, zero defect
 Is there a middle solution?

CraftsmanCraftsman CleanroomCleanroomYES!

Software
Develop-

ment

Software
Develop-

ment

Is there 
a middle 
solution?

Using Software 
Reliability ment mentsolution?yEngineering 

(SRE) Process

far@ucalgary.ca 29



Can We Remove All Bugs?Can We Remove All Bugs?Can We Remove All Bugs?Can We Remove All Bugs?

Si i i i i iSize 
[function points] 

Failure potential 
[development] 

Failure removal rate Failure Density 
[at release] 

1 1.85 95% 0.09 
10 2.45 92% 0.20 
100 3.68 90% 0.37 
1000 5.00 85% 0.75 
10000 7.60 78% 1.67 
100000 9.55 75% 2.39 
A erage 5 02 86% 0 91Average 5.02 86% 0.91 

Defect potential and density are expressed in terms of defects per 
function point

far@ucalgary.ca 30

function point
The answer is usually NO!The answer is usually NO!



What Can We Learn from Failures?What Can We Learn from Failures?What Can We Learn from Failures?What Can We Learn from Failures?

Time Between Failure vs. ith Failure

800

900

1000

Does this plot make 
any sense to you?

500

600

700

ou
rs

200

300

400H
o

0

100

200

1 11 21 31 41 51 61 71 81 91

far@ucalgary.ca 31

ith Failure Failure Time



How to Handle Defects?How to Handle Defects?How to Handle Defects?How to Handle Defects?

 Table below gives the time between failures g
for a software system: 

Failure no 1 2 3 4 5 6 7 8 9 10

 What can we learn from this data?

Failure no. 1 2 3 4 5 6 7 8 9 10
Time since last failure (hours) 6 4 8 5 6 9 11 14 16 19

 What can we learn from this data?
 System reliability?
 Approximate number of bugs in the system? Approximate number of bugs in the system?
 Approximate  time to remove remaining bugs?

far@ucalgary.ca 32



What to Learn from Data?What to Learn from Data?What to Learn from Data?What to Learn from Data?

 The inverses of the inter-failure times are the 
failure intensity (= failure per unit of time) 
data points

Error no. 1 2 3 4 5 6 7 8 9 10

Time since last failure 
(hours)

6 4 8 5 6 9 11 14 16 19

Failure intensity 0.166 0.25 0.125 0.20 0.166 0.111 0.09 0.071 0.062 0.053

far@ucalgary.ca 33



What to Learn from Data?What to Learn from Data?What to Learn from Data?What to Learn from Data?
 Mean-time-to-failures MTTF (or average failure rate)

MTTF = (6+4+8+5+6+9+11+14+16+19)/10 = 9 8 hourMTTF = (6+4+8+5+6+9+11+14+16+19)/10 = 9.8 hour
 System reliability for 1 hour of operation

 Fitting a straight line to the graph in (a) would show an x-
intercept of about 15 Using this as an estimate of the total

1
9.8 0.90299

tt MTTFR e e e    

intercept of about 15. Using this as an estimate of the total 
number of original failures, we estimate that there are still five 
bugs in the software.
Fitti t i ht li t th h i (b) ld i Fitting a straight line to the graph in (b) would give an x-
intercept near 160. This would give an additional testing time 
of 62 units to remove all bugs, approximately.

far@ucalgary.ca 34



A Typical Problem: QuestionA Typical Problem: QuestionA Typical Problem: QuestionA Typical Problem: Question
 Failure intensity (failure rate) of a system is usually 

expressed using FIT (Failure In Time) unit which isexpressed using FIT (Failure-In-Time) unit which is 
1 failure per 10**9 device hours. 

 Failure intensity of an electric pump system used for y p p y
pumping crude oil in Northern Alberta’s oil field is 
constant and is 10,000 FITs and 100 such pumps are 
operationaloperational. 

 If for continuous operation all failed units are to be 
replaced immediately what shall be the minimumreplaced immediately, what shall be the minimum 
inventory size of pumps for one year of operation?

far@ucalgary.ca 35



A Typical Problem: AnswerA Typical Problem: AnswerA Typical Problem: AnswerA Typical Problem: Answer
Pump’s Mean-Time-To-Failure (MTTF) 
λ = 10 000 FITs = 10 000 / 10**9 hour = 1×10** 5 hourλ = 10,000 FITs = 10,000 / 10**9 hour = 1×10**-5 hour 

= 1 failure per 100,000 hours

The 12-month reliability is:      (1 year = 8,760 hours) 
R(8,760 hours) = exp{-8,760/100,000} = 0.916        and 
“unreliability” isunreliability  is,  
F(8,760) = 1 - 0.916 = 0.084 

Therefore, inventory size is 8.4% or minimum 9 pumps 
should be at stock in the first year.

far@ucalgary.ca 36



ChapterChapter 1 Section 21 Section 2

D fi itiD fi itiDefinitionsDefinitions

far@ucalgary.ca 37



TerminologyTerminologyTerminologyTerminology

Treats
Failures
FaultsThe ability of a system to avoid Treats Faults
Errors

Availability
R li bili

The ability of a system to avoid 
failures that are more frequent 
or more severe, and outage 
durations that are longer, than is 

Attributes

Reliability
Safety
Confidentiality
Integrity
M i t i bilit

acceptable to the users.

Dependability

Means
Fault prevention
Fault tolerance

Maintainability
The ability of a 
system to deliver 
service that can Means

Models

Fault tolerance
Fault removal
Fault forecasting

service that can 
justifiably be 
trusted.

Reliability Block Diagram
F lt T d l

far@ucalgary.ca 38

Models Fault Tree model
Reliability Graph



Dependability: TreatsDependability: TreatsDependability: TreatsDependability: Treats

Error cause Fault cause Failure

 An error is a human action that results in software 
containing a fault. co ta g a au t.

 A fault (bug) is a cause for either a failure of the 
program or an internal error (e.g., an incorrect state, p g ( g , ,
incorrect timing). It must be detected and removed.

 Among the 3 factors only failure is observable.

far@ucalgary.ca 40



Definition: FailureDefinition: FailureDefinition: FailureDefinition: Failure

 Failure: Failure: 
 A system failure is an event that occurs when the delivered service 

deviates from correct service. A failure is thus a transition from 
correct service to incorrect service, i.e., to not implementing the 
system function. 

Not all 
failures are 
caused by 
a bug y

 Any departure of system behavior in execution from user needs. A 
failure is caused by a fault and the cause of a fault is usually a 
human error.

g

 Failure Mode: Failure Mode: 
 The manner in which a fault occurs, i.e., the way in which the 

element faults.
 Failure Effect: Failure Effect: 

 The consequence(s) of a failure mode on an operation, function, 
status of a system/process/activity/environment. The undesirable 

t f f lt f t l t i ti l d

far@ucalgary.ca 41

outcome of a fault of a system element in a particular mode.



Failure Intensity & DensityFailure Intensity & DensityFailure Intensity & DensityFailure Intensity & Density

 Failure Intensity (failure rate):Failure Intensity (failure rate): the rate failures are Failure Intensity (failure rate):Failure Intensity (failure rate): the rate failures are 
happening, i.e., number of failures per natural or 
time unit. Failure intensity is way of expressing 
system reliability, e.g., 5 failures per hour; 2 failures 
per 1000 transactions. For system 

end users

 Failure Density:Failure Density: failure per KLOC (or per FP) of 
developed code e g 1 failure per KLOC 0 2 failure

end users

developed code, e.g., 1 failure per KLOC, 0.2 failure 
per FP, etc.

For system 
developers

far@ucalgary.ca 42



Example: Failure DensityExample: Failure DensityExample: Failure DensityExample: Failure Density
 In a software system, 

i b fmeasuring number of 
failures lead to 
identification of 5identification of 5 
modules.

 However, measuring However, measuring 
failures per KLOC 
(Failure Density) leads 
to identification of only 
one module. 

far@ucalgary.ca 43

Example from Fenton’s Book



Definition: FaultDefinition: FaultDefinition: FaultDefinition: Fault
 Fault:Fault: A fault is a cause for either a failure of the 

program or an internal error (e.g., an incorrect state,program or an internal error (e.g., an incorrect state, 
incorrect timing)
 A fault must be detected and then removed

Fault can be removed without execution (e g code Fault can be removed without execution (e.g., code 
inspection, design review)

 Fault removal due to execution depends on the occurrence 
of associated “failure”of associated failure  

 Failure occurrence depends on length of execution time 
and operational profile

D f tD f t f t ith f lt ( ) f il Defect:Defect: refers to either fault (cause) or failure 
(effect)

far@ucalgary.ca 44



Definition: ErrorDefinition: ErrorDefinition: ErrorDefinition: Error
 Error has two meanings:

 A discrepancy between a computed, observed or 
measured value or condition and the true, 

ifi d h i ll lspecified or theoretically correct value or 
condition.
A h ti th t lt i ft t i i A human action that results in software containing 
a fault.

H th h d t t d t t Human errors are the hardest to detect.

far@ucalgary.ca 45



Dependability: Attributes  /1Dependability: Attributes  /1Dependability: Attributes  /1Dependability: Attributes  /1
 Availability: readiness for correct service
 Reliability: continuity of correct service
 Safety: absence of catastrophic consequences on the 

d h iusers and the environment
 Confidentiality: absence of unauthorized disclosure 

f i f tiof information
 Integrity: absence of improper system state 

alterationsalterations
 Maintainability: ability to undergo repairs and 

modifications

far@ucalgary.ca 46

modifications



Dependability: Attributes  /2Dependability: Attributes  /2Dependability: Attributes  /2Dependability: Attributes  /2
 Dependability attributes may be emphasized to a 

greater or lesser extent depending on the application:greater or lesser extent depending on the application: 
availability is always required, whereas 
confidentiality or safety may or may not be required. 

 Other dependability attributes can be defined as  
combinations or specializations of the six basic 
attrib tesattributes. 

 Example: Security is the concurrent existence of 
 Availability for authorized users only; Availability for authorized users only;
 Confidentiality; and 
 Integrity with improper taken as meaning unauthorized.

far@ucalgary.ca 47



Definition: AvailabilityDefinition: AvailabilityDefinition: AvailabilityDefinition: Availability
 Availability:Availability: a measure of the delivery of 

correct service with respect to the alternation 
of correct and incorrect service

UptimetyAvailabili 
DowntineUptime

tyAvailabili


MTTFMTTFl b l
MTBF
MTTF

MTTRMTTF
MTTFtyAvailabili 




far@ucalgary.ca 48



Definition: Reliability  /1Definition: Reliability  /1Definition: Reliability  /1Definition: Reliability  /1
 Reliability is a measure of the continuous delivery of correct 

serviceservice
 Reliability is the probability that a system or a capability of a 

system functions without failure for a “specified time” or 
“number of natural units” in a specified environment (Musanumber of natural units  in a specified environment. (Musa, 
et al.) Given that the system was functioning properly at the 
beginning of the time period
P b bilit f f il f ti f ifi d i i Probability of failure-free operation for a specified time in a 
specified environment for a given purpose (Sommerville) 

 A recent survey of software consumers revealed that 
reliability was the most important quality attribute of the 
application software

far@ucalgary.ca 49



Definition: Reliability  /2Definition: Reliability  /2Definition: Reliability  /2Definition: Reliability  /2
Three key points: 
 Reliability depends on how the software is used 

Therefore a model of usage is required
 Reliability can be improved over time if certain bugs 

are fixed (reliability growth) 
Therefore a trend model (aggregation or regression) 
is needed

 Failures may happen at random time
Therefore a probabilistic model of failure is needed 

far@ucalgary.ca 50



Definition: SafetyDefinition: SafetyDefinition: SafetyDefinition: Safety
 Safety: absence of catastrophic consequences on the 

users and the environmentusers and the environment
 Safety is an extension of reliability: safety is  

reliability with respect to catastrophic failures.y p p
 When the state of correct service and the states of 

incorrect service due to non-catastrophic failure are 
d i f (i h f b i fgrouped into a safe state (in the sense of being free 

from catastrophic damage, not from danger), safety 
is a measure of continuous safeness or equivalentlyis a measure of continuous safeness, or equivalently, 
of the time to catastrophic failure.

far@ucalgary.ca 51



Definition: Definition: ConfidentialityConfidentialityDefinition: Definition: ConfidentialityConfidentiality
 Confidentiality: absence of unauthorized 

disclosure of information
PrivacyPrivacy: : Preventing the 

Confidentiality
Privacy

Confidentiality
Privacy

release of unauthorized 
information about individuals 
considered sensitive

Dependability
Trust

Dependability
Trust

Trust: Trust: Confidence one has that 
an individual will give him/her 
correct information or ancorrect information or an 
individual will protect sensitive 
information

far@ucalgary.ca 52



Definition: Definition: IntegrityIntegrityDefinition: Definition: IntegrityIntegrity
 Integrity: absence of improper system state 

alterations

far@ucalgary.ca 53



Definition: Definition: MaintainabilityMaintainabilityDefinition: Definition: MaintainabilityMaintainability
 Maintainability: ability to undergo repairs 

and modifications
 Maintainability is a measure of the time to y

service restoration since the last failure 
occurrence, or equivalently, measure of the 
continuous delivery of incorrect service.

far@ucalgary.ca 54



Dependability: MeansDependability: MeansDependability: MeansDependability: Means
 Fault  prevention: how to prevent the 

occurrence or introduction of faults
 Fault tolerance: how to deliver correct 

service in the presence of faults
 Fault removal: how to reduce the number orFault removal: how to reduce the number or 

severity of faults
 Fault forecasting: how to estimate the Fault forecasting: how to estimate the 

present number, the future incidence, and the 
likely consequences of faults

far@ucalgary.ca 55

likely consequences of faults



Definition: Definition: Fault PreventionFault PreventionDefinition: Definition: Fault PreventionFault Prevention
 To avoid fault occurrences by construction.
 Fault prevention is attained by quality control 

techniques employed during the design and q p y g g
manufacturing of software. 

 Fault prevention intends to preventFault prevention intends to prevent 
operational physical faults. 

 Example techniques: design review Example techniques: design review, 
modularization, consistency checking, 
structured programming etc

far@ucalgary.ca 56

structured programming, etc.



Definition: Definition: Fault ToleranceFault ToleranceDefinition: Definition: Fault ToleranceFault Tolerance
 A fault-tolerant computing system is capable of 

providing specified services in the presence of aproviding specified services in the presence of a 
bounded number of failures 

 Use of techniques to enable continued delivery of q y
service during system operation

 It is generally implemented by error detection and 
bsubsequent system recovery

 Based on the principle of:
A t d i ti hil Act during operation while 

 Defined during specification and design

far@ucalgary.ca 57



Definition: Definition: Fault Removal  /1Fault Removal  /1Definition: Definition: Fault Removal  /1Fault Removal  /1
 Fault removal is performed both during the 

development phase, and during the operational life ofdevelopment phase, and during the operational life of 
a system. 

 Fault removal during the development phase of a 
system life cycle consists of three steps:system life-cycle consists of three steps: 
verification verification  diagnosis diagnosis  correctioncorrection

 Verification is the process of checking whether the Verification is the process of checking whether the 
system adheres to given properties, called the 
verification conditions. If it does not, the other two 
steps follow: diagnosing the faults that prevented thesteps follow: diagnosing the faults that prevented the 
verification conditions from being fulfilled, and then 
performing the necessary corrections. 

far@ucalgary.ca 58



Definition: Definition: Fault Removal  /2Fault Removal  /2Definition: Definition: Fault Removal  /2Fault Removal  /2
 After correction, the verification process should be repeated in 

order to check that fault removal had no undesiredorder to check that fault removal had no undesired 
consequences; the verification performed at this stage is 
usually called non-regression verification.

 Checking the specification is usually referred to as validation Checking the specification is usually referred to as validation. 
 Uncovering specification faults can happen at any stage of the 

development, either during the specification phase itself, or 
d i b t h h id i f d th t thduring subsequent phases when evidence is found that the 
system will not implement its function, or that the 
implementation cannot be achieved in a cost effective way.

far@ucalgary.ca 59



Definition: Definition: Fault ForecastingFault ForecastingDefinition: Definition: Fault ForecastingFault Forecasting
 Fault forecasting is conducted by performing an 

evaluation of the system behaviour with respect toevaluation of the system behaviour with respect to 
fault occurrence or activation

far@ucalgary.ca 60



Fault Forecasting : How to Fault Forecasting : How to /1/1Fault Forecasting : How to Fault Forecasting : How to /1/1

Q: How to determine number of remaining bugs?Q: How to determine number of remaining bugs?Q g gQ g g
The idea is to inject (seed) some faults in the program and 
calculate the remaining bugs based on detecting the seeded 
faults [Mills 1972] Assuming that the probability offaults [Mills 1972]. Assuming that the probability of 
detecting the seeded and non-
seeded faults are the same. Remaining

U d t t d

Tot

Seeded
U d t t d

Undetected

tal R
em

a

Seeded
Detected

Undetected
Remaining
Detected

Total
Seeded

aining

SENG421 (Winter 2006) far@ucalgary.ca 61

Detected



Fault Forecasting : How to Fault Forecasting : How to //22Fault Forecasting : How to Fault Forecasting : How to //22

 The total injectedn n n  The total injected 
faults (Ns) is already 
known; nd and ns are 

or

detected seeded faults

s d d
d s

s d s

n

n n nN N
N N n

  

measured for a 
certain period of 
i

detected seeded faults
total seeded faults
d t t d i i f lt

s

s

n
N

time.
 Assumption:Assumption: all 

f lt h ld h

detected remaining faults
total remaining faults

d

d

n
N

faults should have 
the same probability 
of being detected   

undetected remaining faults

r d d s s

r

N
N

N n N n   

SENG421 (Winter 2006) far@ucalgary.ca 62

of being detected.



ExampleExampleExampleExample

 Assume that Assume that

=20 =10 =50s s dN n n

50 20 100d
d s

nN N    

   
10d s

s

r d d s s

n
N N n N n      

   100 50 20 10 60
r

r

d d s s

N     

SENG421 (Winter 2006) far@ucalgary.ca 63



Comparative Remaining Comparative Remaining 
Defects  /1Defects  /1Defects  /1Defects  /1

 Two testing teams will be assigned to test the 
same product.

d d  1 2
1 2 12

12
d r d

d dN N N d d d
d

    

1 2

12

Defects detected   by Team 1 :   ;   by Team 2 : 
Defects detected by both teams:   

d d
d12y

total remaining defects
undetected remaining defects

d

r

N
N

SENG421 (Winter 2006) far@ucalgary.ca 64

gr



ExampleExampleExampleExample

Defects detected   

1 2by Team 1 : 50  ;   by Team 2 : 40
Defects detected by both teams: 20

d d
d

 
12Defects detected by both teams:   20d 

1 2 50 40 100d dN 


 

 
12

100
20dN

d
N N d d d



  

 

 
 

1 2 12

100 50 40 20 30
r

r

dN

N

N d d d 

    

SENG421 (Winter 2006) far@ucalgary.ca 65



Fault Forecasting: PCEFault Forecasting: PCEFault Forecasting: PCEFault Forecasting: PCE
Phase containment effectiveness” (PCE)Phase containment effectiveness” (PCE)

A di t D St h K th “ h According to Dr. Stephen Kan the “phase 
containment effectiveness” (PCE) in the software 
development process is:p p

Defects removed (at the step)  100%
Defects existing on step entry + Defects injected during the step

PCE 


 Higher PCE is better because it indicates better 

Defects existing on step entry + Defects injected during the step

response to the faults within the phase. A higher PCE 
means that less faults are pushed forward to later 
phases

SENG421 (Winter 2006) far@ucalgary.ca 66

phases.



Example 2 (cont’d)Example 2 (cont’d)Example 2 (cont d)Example 2 (cont d)

 Using the data from the table below, calculate the 
phase containment of the requirement, design and 
coding phases.

Phase Number of defects 
Introduced Found Removed 

Requirements 12 9 9q
Design 25 16 12
Coding 47 42 36

9  100% 12  100%%75 %42.85
0 + 12 3 + 25
36  100% %57 14

req designPCE PCE

PCE

 
   



SENG421 (Winter 2006) far@ucalgary.ca 67

%57.14
(13+3) + 47codingPCE  



Quality Models: CUPRIMDAQuality Models: CUPRIMDAQuality Models: CUPRIMDAQuality Models: CUPRIMDA
 Quality parameters 

( t f fit )(parameters for fitness): 
 Capability
 Usability Usability
 Performance
 ReliabilityReliability
 Installability
 Maintainability
 Documentation
 Availability Reference: S.H. Kan (1995)

far@ucalgary.ca 68



Quality Models: Boehm’sQuality Models: Boehm’sQuality Models: Boehm sQuality Models: Boehm s

far@ucalgary.ca 69



Quality Models: McCall’sQuality Models: McCall’sQuality Models: McCall sQuality Models: McCall s

far@ucalgary.ca 70



Debug!Debug!

far@ucalgary.ca 71



ChapterChapter 1 Section 31 Section 3

S ft d H dS ft d H dSoftware and Hardware Software and Hardware 
ReliabilityReliability

far@ucalgary.ca 72



Reliability TheoryReliability TheoryReliability TheoryReliability Theory
 Reliability theory developed apart from the 

i t f b bilit d t ti ti dmainstream of probability and statistics, and 
was used primarily as a tool to help 
nineteenth century maritime and lifenineteenth century maritime and life 
insurance companies compute profitable 
rates to charge their customers. Even today,rates to charge their customers. Even today, 
the terms “failure rate” and “hazard rate” are 
often used interchangeably.

 Probability of survival of merchandize after 
one MTTF is 1 0.37R e 

far@ucalgary.ca 73

From Engineering Statistics Handbook



Reliability: Natural SystemReliability: Natural SystemReliability: Natural SystemReliability: Natural System
 Natural system 

lif llife cycle.
 Aging effect: Life 

span of a naturalspan of a natural 
system is limited 
by the maximumby the maximum 
reproduction rate 
of the cells.

far@ucalgary.ca 74

Figure from Pressman’s book



Reliability: HardwareReliability: HardwareReliability: HardwareReliability: Hardware
 Hardware life 

lcycle.
 Useful life span 

of a hardwareof a hardware 
system is limited 
by the age (wearby the age (wear 
out) of the system.

far@ucalgary.ca 75

Figure from Pressman’s book



Reliability: SoftwareReliability: SoftwareReliability: SoftwareReliability: Software
 Software life 

cyclecycle.
 Software systems 

are changed g
(updated) many 
times during their 
life c clelife cycle.

 Each update adds 
to the structuralto the structural 
deterioration of 
the software 

t

far@ucalgary.ca 76

system.
Figure from Pressman’s book



Software vs  HardwareSoftware vs  HardwareSoftware vs. HardwareSoftware vs. Hardware
 Software reliability doesn’t decrease with time, 

i.e., software doesn’t wear out.
 Hardware faults are mostly physical faults, y p y f

e.g., fatigue.
 Software faults are mostly design faults whichSoftware faults are mostly design faults which 

are harder to measure, model, detect and 
correct.correct.

far@ucalgary.ca 77



Software vs  HardwareSoftware vs  HardwareSoftware vs. HardwareSoftware vs. Hardware
 Hardware failure can be “fixed” by replacing a faulty 

component with an identical one therefore nocomponent with an identical one, therefore no 
reliability growth. 

 Software problems can be “fixed” by changing the p y g g
code in order to have the failure not happen again, 
therefore reliability growth is present.

f d h h d i h h Software does not go through production phase the 
same way as hardware does. 

 Conclusion: hardware reliability models may not be Conclusion: hardware reliability models may not be 
used identically for software.

far@ucalgary.ca 78



Reliability: Science Reliability: Science Reliability: Science Reliability: Science 
 Exploring ways of implementing “reliability” 

in software products.
 Reliability Science’s goals:y g

 Developing “models” (regression and aggregation 
models) and “techniques” to build reliable 
software.

 Testing such models and techniques for adequacy, 
soundness and completeness.

far@ucalgary.ca 79



Reliability: Engineering /1Reliability: Engineering /1Reliability: Engineering /1Reliability: Engineering /1

 Engineering of “reliability” in software Engineering of reliability  in software 
products.

 Reliability Engineering’s goal: Reliability Engineering s goal:
developing software to reach the market
 With “minimum” development time With minimum  development time
 With “minimum” development cost
 With “maximum” reliability With maximum  reliability
 With “minimum” expertise needed
 With “minimum” available technology

far@ucalgary.ca 80

gy



What is SRE?  /1What is SRE?  /1What is SRE?  /1What is SRE?  /1
 Software Reliability Engineering (SRE) is a multi-

f t d di i li i th ft d tfaceted discipline covering the software product 
lifecycle. 
It involves both technical and management activities It involves both technical and management activities 
in three basic areas: 
 Software Development and Maintenance Software Development and Maintenance
 Measurement and Analysis of reliability data
 Feedback of reliability information into the software y

lifecycle activities. 

far@ucalgary.ca 82



What is SRE ?  /2What is SRE ?  /2What is SRE ?  /2What is SRE ?  /2
 SRE is a practice for quantitatively planning and 

guiding software development and test withguiding software development and test, with 
emphasis on reliability and availability.

 SRE simultaneously does three things:y g
 It ensures that product reliability and availability meet user 

needs.
It d li th d t t k t f t It delivers the product to market faster.

 It increases productivity, lowering product life-cycle cost.
 In applying SRE one can vary relative emphasis In applying SRE, one can vary relative emphasis 

placed on these three factors.

far@ucalgary.ca 83



However However However …However …
 Practical implementation of an effective SRE 

program is a non-trivial task.program is a non trivial task. 
 Mechanisms for collection and analysis of data on 

software product and process quality must be in 
placeplace. 

 Fault identification and elimination techniques must 
be in place. p

 Other organizational abilities such as the use of 
reviews and inspections, reliability based testing and 
software process improvement are also necessary forsoftware process improvement are also necessary for 
effective SRE.

far@ucalgary.ca 84



ChapterChapter 1 Section 41 Section 4

S ft R li bilitS ft R li bilitSoftware Reliability Software Reliability 
Engineering (SRE) ProcessEngineering (SRE) Process

far@ucalgary.ca 85



SRE: Process /1SRE: Process /1SRE: Process /1SRE: Process /1

 There are 5 steps in p
SRE process (for 
each system to 
test):test):
 Define necessary 

reliability
 Develop 

operational profiles
 Prepare for test Prepare for test
 Execute test
 Apply failure data 

id d i i

far@ucalgary.ca 86

to guide decisions



SRE: Process /2SRE: Process /2SRE: Process /2SRE: Process /2

 Modified version of the SRE Process Modified version of the SRE Process

far@ucalgary.ca 87

Ref: Musa’s book 2nd Ed



SRE: Necessary ReliabilitySRE: Necessary ReliabilitySRE: Necessary ReliabilitySRE: Necessary Reliability
 Define what “failure” means for the software product.

Ch f ll f il i t iti Choose a common measure for all failure intensities, 
either failures per some natural unit or failures per 
hour.

 Set the total system failure intensity objective (FIO) 
for the software/hardware system.

 Compute a developed software FIO by subtracting 
the total of the FIOs of all hardware and acquired 
software components from the system FIOssoftware components from the system FIOs.

 Use the developed software FIOs to track the 
reliability growth during system test (later on).

far@ucalgary.ca 89

y g g y ( )



Failure Intensity Objective (FIO)Failure Intensity Objective (FIO)Failure Intensity Objective (FIO)Failure Intensity Objective (FIO)
 Failure intensity (λ) is defined as failure per natural 

it ( ti )units (or time), e.g.
 3 alarms per 100 hours of operation.
 5 failures per 1000 transactions etc 5 failures per 1000 transactions, etc.

 Failure intensity of a cascade (serial) system is the 
sum of failure intensities for all of the components ofsum of failure intensities for all of the components of 
the system.

 For exponential model: For exponential model:

  1 2

n

system n iz t        

far@ucalgary.ca 90

1i



How to Set FIO?How to Set FIO?How to Set FIO?How to Set FIO?

 Setting FIO in terms of system reliability (R) or  availability 
(A):

 1ln 0.95
RR or for R 


  

1

f
t t
A

t A
 


λ is failure intensity
R is reliability

mt A
λ             R

R is reliability
t is natural unit (time, etc.) 
tm is downtime per failure

A

far@ucalgary.ca 91

p



Reliability Reliability vs  vs  Failure IntensityFailure IntensityReliability Reliability vs. vs. Failure IntensityFailure Intensity

Reliability for 1 hour Failure intensityReliability for 1 hour 
mission time

Failure intensity

0.36800 1 failure / hour
0.90000 105 failure / 1000 hours
0.95900 1 failure / day
0 99000 10 failure / 1000 hours0.99000 10 failure / 1000 hours
0.99400 1 failure / week
0.99860 1 failure / month
0.99900 1 failure / 1000 hours
0.99989 1 failure / year

far@ucalgary.ca 92



SRE: OperationSRE: OperationSRE: OperationSRE: Operation
 An operation is a major system logical task, which 

returns control to the system when completereturns control to the system when complete. 
 An operation is a functionality together with its 

input event(s) that affects the course of behavior of p ( )
software.

 Example: operations for a Web proxy server
 Connect internal users to external Web
 Email internal users to external users
 Email external users to internal users Email external users to internal users
 DNS request by internal users
 Etc.

far@ucalgary.ca 93



SRE: Operational ProfileSRE: Operational ProfileSRE: Operational ProfileSRE: Operational Profile
 An operational profile is a complete set of operations with their 

probabilities of occurrence (during the operational use of the software).
 An operational profile is a description of the distribution of input events 

that is expected to occur in actual software operation.
 The operational profile of the software reflects how it will be used in p p

practice.

 Operational mode

Probability
of occurrence

 Operational mode

far@ucalgary.ca 95

Operation



SRE: System Operational ProfileSRE: System Operational ProfileSRE: System Operational ProfileSRE: System Operational Profile
 System operational profile must be developed for all of its 

important operational modes.important operational modes.
 There are four principal steps in developing an operational 

profile:
Identif the operation initiators (i e ser t pes e ternal s stems and Identify the operation initiators (i.e., user types, external systems, and 
the system itself)

 List the operations invoked by each initiator
 Determine the occurrence rates Determine the occurrence rates
 Determine the occurrence probabilities by dividing the occurrence 

rates by the total occurrence rate

far@ucalgary.ca 96



SRE: Prepare for TestSRE: Prepare for TestSRE: Prepare for TestSRE: Prepare for Test
 The Prepare for Test activity uses the operational 

profiles to prepare test cases and test proceduresprofiles to prepare test cases and test procedures.  
 Test cases are allocated in accordance with the 

operational profile. p p
 Test cases are assigned to the operations by selecting 

from all the possible intra-operation choices with 
l b biliequal probability.

 The test procedure is the controller that invokes test 
cases during executioncases during execution.

far@ucalgary.ca 97



SRE: Execute TestSRE: Execute TestSRE: Execute TestSRE: Execute Test
 Allocate test time among the associated systems and 

t f t t (f t l d i t )types of test (feature, load, regression, etc.).  
 Invoke the test cases at random times, choosing 

operations randomly in accordance with theoperations randomly in accordance with the 
operational profile.

 Identify failures along with when they occur Identify failures, along with when they occur.  
 This information will be used in Apply Failure Data

and Guide Testand Guide Test.

far@ucalgary.ca 98



Types of TestTypes of TestTypes of TestTypes of Test
 Certification Test: Certification Test: Accept or reject (binary 

decision) an acquired component for a given targetdecision) an acquired component for a given target 
failure intensity.

 Feature Test:Feature Test: A single execution of an operation 
with interaction between operations minimizedwith interaction between operations minimized.

 Load Test:Load Test: Testing with field use data and 
accounting for interactions g

 Regression Test:Regression Test: Feature tests after every build 
involving significant change, i.e., check whether a 
bug fix workedbug fix worked.

far@ucalgary.ca 99



SRE: Apply Failure DataSRE: Apply Failure DataSRE: Apply Failure DataSRE: Apply Failure Data
 Plot each new failure as it occurs on a 

reliability demonstration chart.
 Accept or reject software (operations) using p j ( p ) g

reliability demonstration chart.
 Track reliability growth as faults are removed.Track reliability growth as faults are removed.

far@ucalgary.ca 100



Release CriteriaRelease CriteriaRelease CriteriaRelease Criteria
Consider releasing the product when:
1. All acquired components pass certification 

test
2. Test terminated satisfactorily for all the 

product variations and components with theproduct variations and components with the 
λ/λF ratios for these variations don’t 
appreciably exceed 0.5 (Confidence factor)appreciably exceed 0.5 (Confidence factor)

far@ucalgary.ca 101



Collect Field DataCollect Field DataCollect Field DataCollect Field Data
 SRE for the software product lifecycle.
 Collect field data to use in succeeding releases either using Collect field data to use in succeeding releases either using 

automatic reporting routines or manual collection, using a 
random sample of field sites.
C ll t d t f il i t it d t ti f ti Collect data on failure intensity and on customer satisfaction 
and use this information in setting the failure intensity 
objective for the next release.  

 Measure operational profiles in the field and use this 
information to correct the operational profiles we estimated.   

 Collect information to refine the process of choosingCollect information to refine the process of choosing 
reliability strategies in future projects.

far@ucalgary.ca 102



ConclusionsConclusionsConclusionsConclusions
 Software Reliability Engineering (SRE) can 

offer metrics and measures to help elevate a 
software development organization to the 
upper levels of software development maturity.

 However, in practice effective implementation 
of SRE is a non-trivial task!

far@ucalgary.ca 103



SENG521 far@ucalgary.ca 104


