SCHULICH & B
L B F

SENG 637

Dependability, Reliability &
73 Testing of Software

EAIERS Systems

Chapter 1: Overview

S

Department of Electrical & Computer Engineering, University of Calgary
B.H. Far (far@ucalgary.ca)
http://www.enel.ucalgary.ca/People/far/Lectures/SENG637/

|250 |=00 i?E.!'J |-1[il_'l [4E0
i.|...|.|.|.|.|. clabababababibalabitalalalild

far@ucalgarylca IS L l (|

Shorter version:
» How to avoid these?

fssm32.exe has encountered a problem and needs to
close. We are sony for the inconvenience.

1F you were in the middle of something, the information you were working on
might be lost,

Please tell Microsoft about this problem.

‘wie have created an error report that you can send to uz, e wil treat
this report as confidential and anorpmous

CPUID: GenuineIntel 5.2.c irgl:lf SYSUER Bxf88088565

Ta see what data this enor report contains. click here,
Base DateStmp — Hame Pll Base Hane
Serd Enor Report | Dont Serd S0 allly svs
isk.sy

ation Error

The instruction at "0x1000228F" referenced memary at "0x08F3d920", The memory could not be "read”. 4L,8888

Click an OK ta terminate the pragram

Click on CANCEL to debug the program Application Error

Cancel

Biuescreen has performed an ibegal operation, Bluescrean must be dosed,

mERaRmE MGG

WHHEEG

wEtoskrnl .exe

Restavt and set the rec oy ons in the sustemn control panel
or the SCRASHDEBUG t opt ion .

Windows 95 wasz unable to detect
; pour keyboard, Press F1 to retry o
3 F2 to abort,

far@ucalgary.ca

Longer version:

>
>

What is this course about?
What factors affect software
quality?

What is software reliability?
What is software reliability
engineering?

What is software reliability
engineering process?

600

Failed to open page

4 n Safari can’t find the server.
k ¥, Safari can't open the page “http://www.google.com/”
A because it can't find the server "www.google.com™. -
(62

(@, www.google.com

far@ucalgary.ca

111!4;

\ ﬂ\'b About This Course ...

= The topics discussed include:

= Concepts and relationships
= Analytical models and supporting tools

= Techniques for software reliability improvement,
including:
« Fault avoidance, fault elimination, fault tolerance
« Error detection and repair
= Failure detection and retraction

= Risk management

far@ucalgary.ca

Terminology & Scope

o
LA
|G

Treats EE

-

x

: Safety 3

Dependability gintes Confidentiality s

Integrity 52

Maintainability :

- E

The ability of a -

system to deliver 3

: Means &

service that can E

justifiably be i
trusted.

Models

=8 |20, , [250. |00 S0 |

B . B - S - 3 6 B[

far@ucalgary.ca

l

Software Reliability

oy
L)
NG

Software Reliability

/\

Concept

e

Reliability
Availability
Failure rate
MTTF

Failure density
Etc.

Model Process
Single Multiple SRE
Failure Failure Process
Model Model FTT

{ Develop (_!pemtim‘.;i'. Profiles
l L—b Prepare 1.'01' Test
Reliability
Growth
Model \ b |
200,

far@ucalgary.ca

[

—
Bl

mg
|G

) Software Testing

Software Testing

Techniques Process =

l

Other: Certification Reliability SRE
Black-box Test Growth Process _
White-box Test

Define “Necessary”

Al h A b | Reliability
p 14 -:___E
Develop Operational Profiles , 53

|

Beta e :
B N b ‘E;’ 8 —7 [Continue -~ E
I g - an g 3 s A E o
P d Acce Basic model

Logarithmic Polsson model

Stress :
Etc . : ‘ ¢) * Exetiion e ¢ Requirements [

Normalized failure time and [mol
. mplementation
Architeeture pieme

|z00 S50

far@ucalgary.ca

Questlon to Ask

- Do I really need to take this course? =
= Answer depend on you! _

-:-'-'||

= Take this course 1f you want to avoid these in your
career as a software designer, tester and quality =

controller:

TURN
RIGHT

':'U_l_l ; [
i b L b i Ealal

':'E'Il\."'|
ilils

What the customer
really needed

Howw the Programrmer How it was supported

wrrote it

far@ucalgary.ca

What 1s software reliability engineering (SRE)?
Why SRE is important? How does 1t affect software quality?
What are the main factors that affect the reliability of software?

Is SRE equivalent to software testing? What makes SRE different from
software testing?

m How can one determine how often will the software fail?

= How can one determine the current reliability of the software under
development?

= How can one determine whether the product is reliable enough to be
released?

= Can SRE methodology be applied to the current ways of software
development such as component-based and agile development?

= What are challenges and difficulties of applying SRE?
= What are current research topics of SRE?

far@ucalgary.ca

SCHULICH %
Sefcel o egnaving
LG

(] G
S5 : _{P‘:: 4
i

UNIVERS

CALG*R‘%’,E Chapter 1 Section 1

From Software Quality to
Software Reliability Engineering

far@ucalgarylca L1l ittt i1l il i iiilil :.!.:_llo. L1l

What is Quality?

o
L)
NG

= Quality popular view:

- Something “good” but not
quantifiable

l\.__ll

-:-'-'||

o=
|

-|-IE|||I:II

- Something luxury and classy

-
1l

-.~| q
clililild

= Quality professional view:

oor
il

- Conformance to requirement
(Crosby, 1979)

- Fitness for use (Juran, 1970)

Cll.l'lil\.'l
sl lali

SENG521 far@ucalgary.ca

) Quality: Various Views

HCI

[tao {150 Rl =17 R =t e = [R = s W

SQA

=) S S S B S N N N N N N N N S N N N N S N N R W B W T W T

far@ucalgary.ca

7
1y

» What is Software Quality?

= Conformance to requirement

= The requirements are clearly stated and the
product must conform to it

= Any deviation from the requirements is
regarded as a defect s

= A good quality product contains fewer defects
= Fitness for use &

= Fit to user expectations: meet user’s needs

= A good quality product provides better user
satisfaction

i

What is
~Specified?

SENG521 far@ucalgary.ca

Definition: Software Quality

o
L)
NG

ISO 8402 definition Ars the required functions _
of QUALITY: Neunctionatty E
The totality of oy >
features and i B
characteristics of a :LV isa ﬁ -
product or a wowossy s cnange | &3 S g |t somuare
service that bearon =~ ™ | §%8 /N 3 7
its ability to satisfy — T~

Efficiency

stated or implied
How efficient is the software? 3
needs —
Reliability Maintainability
two major components of Quality

SENG521 far@ucalgary.ca

Characteristics Attributes

1. Functionality Suitability Interoperability Accuracy
Compliance Security

2. Reliability Maturity Recoverability Fault tolerance
Crash frequency

3. Usability Understandability Learnability Operability

4. Efficiency Time behaviour Resource behaviour

5. Maintainability Analyzability Stability Changeability
Testability

6. Portability Adaptability Installability Conformance
Replacability

far@ucalgary.ca

) Quality Model — Structure

0

User oriented =
02

Quality Quality Quality Ilj_,

Factor 1 Factor 2 Factor n o

T

L]

|_|_

v Voo k:

Quality Quality Quality Quality ik

Criterion Criterion Criterion mar Criterion 3

Software oriented L 2 3 m 7
0=

l2ao, . |2s0 o |Boo o [@E0 |y

far@ucalgary.ca

?‘@D Example: Attribute Expansion

= Design by measurable
objectives:

i

Quality objective

Incremental design 1s

evaluated to check whether availability
the goal for each increment

was achieved.

User friendliness |

% of planned Days on job to
System uptime learn task supplied
By new system

Worst: 95% Worst: 7 days
Best: 99% Best: 1 day

far@ucalgary.ca 17 \‘

) What Affects Quality?

SENG521 far@ucalgary.ca

== o
I,What Affects Software Quality*

s Time:

= Meeting the project
deadline.

= Reaching the market at
the right time.

m Cost:

= Meeting the anticipated
project costs.

n Quality (reliability):
= Working fine for the

designated period on
the designated system.

M 7
e

s oA
|3
|50 |80

far@ucalgary.ca

(i) Quality vs. Project Costs
15 '

Cost distribution for a typical software project %
Product L
Integration Design o
and test :
-
(.
| wainten@" g
"""""""""""""""""""""""""" cost 1S g L3
1ss\N9* -
misS E
Release ?
Q-
Programming 1 _—
Design Programming Testing

What is wrong with this picture?

|200 it [200 . |[250 | |[4S0OH n

SENG521 far@ucalgary.ca

Total Cost Distribution

o
L)
NG

Maintenance is responsible for more that 60% of total cost "

for a typical software project _
Product Design Questlons:

1) How to
Programming DUIld quality
Into a system?
Maintenance 2) How to
Integration assess quality
andtest — of a system?

Developing better quality system will
contribute to lowering maintenance costs

e 00 1950 CSCHULICED

SENG521 far@ucalgary.ca

':'U_l_l ; e [
T -

':'E'Il\."'|
ilils

iy
'

1) How to Build Quality into a
) System?

l
— = Developing better quality systems requires:

= Establishing Quality Assurance (QA) programs

= Establishing Reliability Engineering (SRE)
process

SENG521 far@ucalgary.ca

_ 2) How to Assess Quality of a

= Relevant to both pre-
release and post-

Quality
release Assess
ment
= Pre-release: SRE,
certification, . '
standards ISO9001 Ee R
= Post-release:

evaluation, validation
RAM

A4
<

|00
it

SENG521 far@ucalgary.ca

= Ad-hoc (trial

and error) _ = £

approach! T | e E

| Come on! We'lldo it | .

right this time!

= Systematic

approach E

Our focus _
in this
course

SENG521 far@ucalgary.ca

) Pre-release Quality

m Software Facts:
iIlSp ection an d . Ab(fut 20% of the softwaf'e
. projects are canceled. (missed
teStlng schedules, etc.)
. e About 84% of software projects
n MCthOdS. are incomplete when released
s SRE (need patch, etc).

e Almost all of the software projects
costs exceed initial estimations.

s Standards (cost overrun)
ISO9001, 9126, 2
25000

s Certification

SENG521 far@ucalgary.ca

¢)

g

A

) Fatal Software Examples

—

Fatal software related incidents [Gage & McCormick 2004]

Date Casualties | Detail

2003 3 Software failure contributes of power outage across North-eastern
U.S. and Canada.

2001 3 Panamanian cancer patients die following overdoses of radiation,
determined by the use of faulty software.

2000 4 Crash of marine corps osprey tilt-rotor aircraft, partially blamed on
software anomaly.

1997 225 Radar that could have prevented Korean jet crash hobbled by
software problem.

1995 159 American airlines jet, descending into Cali, Columbia crashes into
a mountain. A cause was that the software presented insufficient
and conflicting information to the pilots, who got lost.

1991 28 Software problem prevents Patriot missile battery from picking up
SCUD missile, which hits US Army barracks in Saudi Arabia.

1200
L

far@ucalgary.ca

Require-
ments

Field
Use

Functiona
Test

System

COding ste

Design

:

I

|

| Fault
i Origin
I

I

I

I

I

I

f —— Ay TRpE—

Fault |
Detection

Fault

1 KDM = 1,000 Deutsch Marks

CMU Software Englneerlng |nst|t
= =t I_I_ II-J.E.::: | .

far@ucalgary.ca e

A Central Question

NG
o
A
(|

= In spite of having many development

methodologies, central questions are:

1. Can we remove all bugs before release?
2. How often will the software fail?

=

These are exactly the questions that we are
going to answer in this course!

far@ucalgary.ca

i

N

k) Two Extremes
NI

s Craftsman SE: fast, cheap, buggy
» Cleanroom SE: slow, expensive, zero defect
= Is there a middle solution?

YES!

Cleanroom
Software
Develop-

Craftsman
Software
Develop-
ment

Using Software
Reliability
Engineering
(SRE) Process

far@ucalgary.ca

1

z
©
i

—
Bl

)Can We Remove All Bu

gs?

Size Failure potential | Failure removal rate | Failure Density
[function points] [development] [at release]

1 1.85 95% 0.09
10 2.45 92% 0.20
100 3.68 90% 0.37
1000 5.00 85% 0.75
10000 7.60 78% 1.67
100000 9.55 75% 2.39
Average 5.02 86% 0.91

Defect potential and density are expressed in terms of defects per

function point

The answer is usually NO!

==l fa!)
| + r

far@ucalgary.ca

= ,
iiﬁ'b What Can We Learn from Failures?
NG

Time Between Failure vs. ith Failure

1000

1 Does this plot make
= any sense to you?
700 + g

600 +

500 +

Hours

400 +

300 | oo
“-

c -

200

100 +

.

alu

1 11 21 31 41 51 61 71 81 91

ith Failure — Failure Time

far@ucalgary.ca

1

I —

= Table below gives the time between failures
for a software system:

Failure no. 123 als e 78 [o [10]
Time since last failure (hours) 6 |4 |8 |5 |6 |9 (1114 |16 |19 |

= What can we learn from this data?
= System reliability?
= Approximate number of bugs in the system?
= Approximate time to remove remaining bugs?

far@ucalgary.ca

s The inverses of the inter-failure times are the -

fatlure intensity (= failure per unit of time)
data points

Error no. 1 2 3 4 5 6 7 8 9 10
Time since last failure 6 4 8 5 6 9 11 14 16 19
(hours) .
Failure intensity 0.166 | 0.25 | 0.125 | 0.20 | 0.166 | 0.111 | 0.09 | 0.071 | 0.062 | 0.053
93] [0,3
025 S 0.25-—o
I 0—2'7%\ g 0.2 .
g ® ®
P VN 5 s S
0.05 \- 5 0.05
. e~ 0
1 2 34 5 6 7 8 9 1011 12 13 14 15 168 17 Q
Nummber of Errors

far@ucalgary.ca

S ?
,What to Learn from Data

| s Mean-time-to-failures MTTF (or average failure rate)
MTTF = (6+4+8+5+6+9+11+14+16+19)/10 = 9.8 hour
= System reliability for 1 hour of operation

R =g =g /MTF =g /%5 =.90299
= Fitting a straight line to the graph in (a) would show an x-
intercept of about 15. Using this as an estimate of the total -
number of original failures, we estimate that there are still five:-
bugs in the software. |

= Fitting a straight line to the graph in (b) would give an x-
intercept near 160. This would give an additional testing time
of 62 units to remove all bugs, approximately.

far@ucalgary.ca

—

Q?‘ﬁ@ A Typical Problem: Question

l
— = Failure intensity (failure rate) of a system is usually -
expressed using FIT (Failure-In-Time) unit which 1s

1 failure per 10**9 device hours.

= Failure intensity of an electric pump system used for —
pumping crude oil in Northern Alberta’s oil field is -
constant and is 10,000 FITs and 100 such pumps are *
operational.

= If for continuous operation all failed units are to be
replaced immediately, what shall be the minimum
inventory size of pumps for one year of operation?

far@ucalgary.ca 35 @

S0 .
{7) A Typical Problem: Answer
uﬂk\‘ . .

— Pump’s Mean-Time-To-Failure (MTTF)
A =10,000 FITs = 10,000 / 10**9 hour = 1x10**-5 hour

= 1 failure per 100,000 hours

The 12-month reliability is: (1 year = 8,760 hours)
R(8,760 hours) = exp{-8,760/100,000} =0.916 and
“unreliability” 1s,

F(8,760)=1-0.916 =0.084

Therefore, inventory size 1s 8.4% or minimum 9 pumps
should be at stock in the first year.

| 4
hel=g]
|350 | i)

far@ucalgary.ca

SCHULICH &5 B
schulc 8 B

(] G
S5 : _{P‘:: 4
i

UNIVERS

CALG*R‘%’,E Chapter 1 Section 2

Definitions

£

far@ucalgary.ca

Failures

The ability of a system to avoid Treats Faults]
failures that are more frequent Errors =
or more severe, and outage
durations that are longer, than is Availability
acceptable to the users. Re]liability
Dependability ahgiibutes iinitizentiality

Integrity =

Maintainability -

The ability of a

system to deliver Fault prevention;__:-__._%

service that can Means Fault tolerance -
justifiably be Fault removal -
trusted Fault forecasting

Fault Tree model
Reliability Grap

|zer = (250 ET.
e |200 gy 1“SCH

Models E Reliability Block Diagram

far@ucalgary.ca

S

(]

s An error is a human action that results in software
containing a fault.

Dependability: Treats

= A fault (bug) 1s a cause for either a failure of the]
program or an internal error (e.g., an incorrect state, -
incorrect timing). It must be detected and removed. -

= Among the 3 factors only failure 1s observable.

cen B BRn L FSCHULICH &)

far@ucalgary.ca

, Definition: Failure

n Failure:
= A system failure is an event that occurs when the delivered service

Not all 4 ; / A Ve
failures are deviates from correct service. A failure is thus a transition from
caused by correct service to incorrect service, 1.€., to not implementing the
a bug system function.

= Any departure of system behavior in execution from user needs. A
failure 1s caused by a fault and the cause of a fault 1s usually a
human error.

m Failure Mode:

= The manner in which a fault occurs, 1.€., the way in which the
element faults.

m Failure Effect:

= The consequence(s) of a failure mode on an operation, function,
status of a system/process/activity/environment. The undesirable
outcome of a fault of a system element in a particular mode.

far@ucalgary.ca

, Failure Intensity & Density

= Failure Intensity (failure rate): the rate failures are
happening, 1.e., number of failures per natural or :
time unit. Failure intensity 1s way of expressing
system reliability, e.g., 5 failures per hour; 2 failures

per 1000 transactions. For system
end users

= Failure Density: failure per KLOC (or per FP) of -
developed code, e.g., 1 failure per KLOC, 0.2 failure

per FP, etc.
For system
ﬁ developers]

far@ucalgary.ca

) Example: Failure Density

I —

= In a software system, o Number or fauts per system area (1992)
measuring number of ol
failures lead to -
identification of 5 el II'
modules.

N O ™GO

— 0 =0 =
S NZF@gzoOWLZ O o nON

6°3xa6%0

Others

= However, measuring etem ares
failures per KLOC S —
(Failure Density) leads
to 1dentification of only
one module.

Faults per KLOC

F W G1 s
Area
izocExamplefrom Feg

far@ucalgary.ca

S G
@‘ﬁ\‘b Definition: Fault
I Fault: A fault 1s a cause for either a failure of the

program or an internal error (e.g., an incorrect state,
Incorrect timing)

= A fault must be detected and then removed

= Fault can be removed without execution (e.g., code
inspection, design review)

= Fault removal due to execution depends on the occurrence -
of associated “failure”

= Failure occurrence depends on length of execution time
and operational profile

n Defect: refers to either fault (cause) or failure
(effect)

far@ucalgary.ca 44 -

?@D Definition: Error

I —

= Error has two meanings:

= A discrepancy between a computed, observed or
measured value or condition and the true,
specified or theoretically correct value or
condition.

= A human action that results in software containing
a fault. E

s Human errors are the hardest to detect.

far@ucalgary.ca

Dependablllty Attributes /1

i

= Availability: readiness for correct service
= Reliability: continuity of correct service

= Safety: absence of catastrophic consequences on the
users and the environment

= Confidentiality: absence of unauthorized disclosure
of information

= Integrity: absence of improper system state
alterations

= Maintainability: ability to undergo repairs and
modifications

far@ucalgary.ca 46 N8

?‘@' Dependability: Attributes /2

1

l
|

— = Dependability attributes may be emphasized to a
greater or lesser extent depending on the application:
availability 1s always required, whereas
confidentiality or safety may or may not be required.

= Other dependability attributes can be defined as
combinations or specializations of the six basic
attributes.

= Example: Security 1s the concurrent existence of
= Availability for authorized users only;

= Confidentiality; and
= Integrity with improper taken as meaning unauthorized.

far@ucalgary.ca 47 N~

G?‘@ Definition: Availability

= Availability: a measure of the delivery of
correct service with respect to the alternation
of correct and incorrect service

Availability = ——Pame
Uptime + Downtine
R AlaBAty L e, L TE

MTTF + MTTR MTBF

far@ucalgary.ca

8~ ° op o ° opgeo

() Definition: Reliability /1
— = Reliability 1s a measure of the continuous delivery of correct
service

= Reliability is the probability that a system or a capability of a 5-
system functions without failure for a “specified time” or
“number of natural units” in a specified environment. (Musa, .-
et al.) Given that the system was functioning properly at the
beginning of the time period

= Probability of failure-free operation for a specified time in a
specified environment for a given purpose (Sommerville)

= A recent survey of software consumers revealed that
reliability was the most important quality attribute of the
application software

I2E0 1 g
=L r

far@ucalgary.ca 49 N

iﬂ'@ Definition: Reliability /2

1

l
|

~ Three key points:

= Reliability depends on how the software 1s used
Therefore a model of usage is required

= Reliability can be improved over time if certain bugs
are fixed (reliability growth)

Therefore a trend model (aggregation or regression)
1s needed

» Failures may happen at random time
Therefore a probabilistic model of failure is needed

12EN A .
[==L ;

far@ucalgary.ca

—

l

tmb Definition: Safety

— m Safety: absence of catastrophic consequences on the -
users and the environment

= Safety 1s an extension of reliability: safety 1s
reliability with respect to catastrophic failures.

= When the state of correct service and the states of
incorrect service due to non-catastrophic failure are
grouped 1nto a safe state (in the sense of being free
from catastrophic damage, not from danger), safety -
is a measure of continuous safeness, or equivalently, -
of the time to catastrophic failure.

far@ucalgary.ca

, Definition: Confidentiality

= Confidentiality: absence of unauthorized z
disclosure of information ;

i
|

Privacy: Preventing the
release of unauthorized
information about individuals _°
considered sensitive

Confidentiality

Trust: Confidence one has that -
Dependability an individual will give him/her _
correct information or an 03
individual will protect sensitive —
information

far@ucalgary.ca

") Definition: Integrity
NI

= Integrity: absence of improper system state -
alterations —

i
|

far@ucalgary.ca

) Definition: Maintainability

o = Maintainability: ability to undergo repairs
and modifications
= Maintainability 1s a measure of the time to
service restoration since the last failure

occurrence, or equivalently, measure of the
continuous delivery of incorrect service.

far@ucalgary.ca

~*) Dependability: Means
(4]0P Y

= Fault prevention: how to prevent the
occurrence or introduction of faults

= Fault tolerance: how to deliver correct
service 1n the presence of faults

= Fault removal: how to reduce the number or
severity of faults

= Fault forecasting: how to estimate the
present number, the future incidence, and the
likely consequences of faults

far@ucalgary.ca

1

?ﬁ@ Definition: Fault Prevention

= To avoid fault occurrences by construction.

= Fault prevention is attained by quality control -
techniques employed during the design and
manufacturing of software.

= Fault prevention intends to prevent
operational physical faults.

s Example techniques: design review,
modularization, consistency checking,
structured programming, etc.

far@ucalgary.ca

1

?‘@ Definition: Fault Tolerance

— m A fault-tolerant computing system is capable of
providing specified services in the presence of a
bounded number of failures

= Use of techniques to enable continued delivery of
service during system operation

= It is generally implemented by error detection and
subsequent system recovery

= Based on the principle of:
= Act during operation while
= Defined during specification and design

I2E0 1 g
=L r

far@ucalgary.ca

@ﬁ:!b Definition: Fault Removal /1

== Fault removal is performed both during the <
development phase, and during the operational life of -
a system. |

» Fault removal during the development phase of a
system life-cycle consists of three steps:

verification - diagnosis = correction

= Verification is the process of checking whether the
system adheres to given properties, called the
verification conditions. If it does not, the other two -
steps follow: diagnosing the faults that prevented the
verification conditions from being fulfilled, and then —
performing the necessary corrections.

far@ucalgary.ca

@ﬁ:!b Definition: Fault Removal /2

=0 After correction, the verification process should be repeated in_.
order to check that fault removal had no undesired]
consequences; the verification performed at this stage 1s

usually called non-regression verification.

= Checking the specification is usually referred to as validation.

= Uncovering specification faults can happen at any stage of the
development, either during the specification phase itself, or
during subsequent phases when evidence 1s found that the
system will not implement its function, or that the
implementation cannot be achieved in a cost effective way.

far@ucalgary.ca 50 “Ng@*

84 o wope o

@W Definition: Fault Forecasting

NG

=5 Fault forecasting 1s conducted by performing an
evaluation of the system behaviour with respect to

fault occurrence or activation

far@ucalgary.ca

c -

NG

3

/‘Hr“" ’
\%

—

Fault Forecasting : How to /1

|
|

Q: How to determine number of remaining bugs?

The 1dea is to 1nject (seed) some faults in the program and —
calculate the remaining bugs based on detecting the seeded
faults [Mills 1972]. Assuming that the probability of

| o
Lil 1

oo

detecting the seeded and non-) 3
seeded faults are the same. = =
5
po B
5 r
: PS¢
v
- B

Total < =

Seeded @

N A e

i s
|200 |2:\-

i I L. B W i A e R A YL R

- —————

SENG421 (Winter 2006) far@ucalgary.ca

) Fault Forecasting : How to /2

e

N, _ Ny N n, N = The total injected |
N_s A N_d . - n_S AL faults (Ns) 1s already °
n, detected seeded faults known; nd and ns are

measured for a

certain period of
n, detected remaining faults time.

N. total seeded faults

S

N, total remaining faults = Assumption: all

N, undetected remaining faults faults should have

r the same probability
N =(N,—=n N.—n
- =(Ng =1y)+(N, -n,) of being detected.

| 4
hel=g]
|350 | i)

SENG421 (Winter 2006) far@ucalgary.ca 62 -

s Assume that

N.=20 n=10 n,=50

N, =N =22520 =100
n 10

<

(N, —ny)+(N,—n,)
(100-50)+(20-10) = 60

Nr
Nr

SENG421 (Winter 2006) far@ucalgary.ca

S

_ Comparative Remaining

T
()

= Two testing teams will be assigned to test the -
same product.

d.d
= C; = Nr:Nd_(d1+d2_d12)
12

Defects detected by Team 1:d, ; by Team?2 :d,
Defects detected by both teams: d,,

N,

N, total remaining defects

N. undetected remaining defects

SENG421 (Winter 2006) far@ucalgary.ca

Defects detected
by Team1:d =50 ; byTeam?2:d, =40
Defects detected by both teams: d,, =20

~dd, 50x40
BT,
N, =N, —(d,+d,-d,,)

I

N, =100 —(50+40—20)=30

I

N, =100

SENG421 (Winter 2006) far@ucalgary.ca

_7") Fault Forecasting: PCE
il 4
?hase containment effectiveness” (PCE)

= According to Dr. Stephen Kan the “phase
containment effectiveness” (PCE) 1n the software
development process 1s:

1

Defects removed (at the step) x 100%
Defects existing on step entry + Defects injected during the step

PCE =

= Higher PCE 1s better because 1t indicates better
response to the faults within the phase. A higher PCE -
means that less faults are pushed forward to later
phases.

[250 _____.l_'ﬁ_ "
SENG421 (Winter 2006) far@ucalgary.ca 66 %

ple 2 (cont’d)

= Using the data from the table below, calculate the
phase containment of the requirement, design and
coding phases.

Phase Number of defects
Introduced Found Removed
Requirements 12 9 9
Design 25 16 12
Coding 47 42 36
REE, == ;:?g% — %75 PCEyy = 123X+12()5()% = %42.85

~ 36 x 100%

Ecoging = =%57.14
(13+3) + 47

SENG421 (Winter 2006) far@ucalgary.ca

—
Bl

ﬁﬂ'@ Quality Models: CUPRIMDA

i

A : \
= Quality parameters & . ;
CAPABILITY S i
(parameters for fitness): [wam e %@Q’“
Q 1
= Capability PERFORMANCE | @ | @] <& S Q]
RELIABILITY e olel & & Q]
oq e \Y o 1
0 Usablhty INSTALLABILITY olol0 \gé\y /\V\Q@\ &
N 2\
= Performance MaNTANABLLTY | @ | O | @O O @@ o
N\ LR DOCUMENTATION | @ | O ol & &
= Reliability aaasLy (@O [Olo ‘§/
= Installability —
= Maintainability O SUPPORT ONE ANOTHER
BLANK NONE

= Documentation

= Availability Reference: S.H. Kan (1995)

far@ucalgary.ca

Primary uses Intermediate constructs

Portability

As is utility

Reliability |

) Quality Models: Boehm’s

Primitive constructs

Device Independence j————
Completeness |——
Accuracy | oam—|

Consistency =i
Device efficiency i

I Efficiency

General utility

Human engineering

T~

Maintainabilit

Testability

Acessibility F—
Communicativeness [——1
Structuredness fr————t

Understandability

Modifiability

{ Self descriptiveness f————rt
Conciseness —
Legibility F—
Augmentability f———r

Metrics

far@ucalgary.ca

) Quality Models: McCall’s

Use

Product
operation

Product
revision

Product
transition

Factor Criteria
Operability
| Usability] Training
Communicativeness
l Integrity 1 [I/O volume
1/0 rate
[Efficiency 1\' Access control
L Access audit
I Correctness I I Storage efficiency
Execution efficiency
II Reliability Traceability
I Completeness
] Maintainability Accuracy
Error tolerance
[Testability Consistency
Simplicity
I Flexibility Conciseness
Instrumentation
I Reusability —] Expandability
Generality
[Portability] —
Self-descriptiveness
Modularity
| Interoperability l

Machine independence

S/w system indecpcendence

I

Comms commonality

Data commonality

L 2k =
1200 |350
L

[T

T

I

far@ucalgary.ca

T

- Metrics

1

~
o

|
|
|

| l:lL'1| iz
| T T T N |

oo

o=
[N

o T
[

LR

[200
_ :

far@ucalgary.ca

SCHULICH %
Sefcel o egnaving
LG

iy ,{P;'/'

UNIVERS

CALG*R‘%’,E Chapter 1 Section 3

Software and Hardware
Reliability

far@ucalgarylca N TSN NN NN SN N, '__:-!.L7:2_:-!.-_

—

() Reliability Theory

l
|

= Reliability theory developed apart from the
mainstream of probability and statistics, and
was used primarily as a tool to help -
nineteenth century maritime and life
Insurance companies compute profitable .
rates to charge their customers. Even today,
the terms “failure rate” and “hazard rate” are "
often used interchangeably.

= Probability of survival of merchandize after
one MTTF1s R=¢' =037

From Engineering Statistics Handbook

- 1= ol -

far@ucalgary.ca 73 @

D Reliability: Natural System

o Natural system
life cycle.

s Aging effect: Life
span of a natural
system 1s limited
by the maximum
reproductionrate | = o m e
of the cells. —

Failure rate

Figure from Pressmair s boot
[200 250 " 1 B

far@ucalgary.ca

S

) Reliability: Hardware

-~ m Hardware life
cycle.

n Useful life span
of a hardware
system 1s limited
by the age (wear
out) of the system.

Failure rate

Time

Figure from Pressmarr s boot
{200 350 <% L =

far@ucalgary.ca

S

G?‘@ Reliability: Software

— m Software life
cycle.

= Software systems
are changed
(updated) many
times during their
life cycle.

= Each update adds
to the structural
deterioration of
the software
system.

Increased failure
| roteduetoside

Failure rate

- ' . k'Cﬁan‘ge 1 .

‘ Actual curve . E

Time

e Figure from Pressmair s boo
|zo0 [250 E(Ty LT

far@ucalgary.ca 76 g

1

~) Software vs. Hardware
(i

s Software reliability doesn’t decrease with time;:
i.e., software doesn’t wear out.
= Hardware faults are mostly physical faults,
e.g., fatigue.
= Software faults are mostly design faults which -
are harder to measure, model, detect and
correct.

far@ucalgary.ca

~) Software vs. Hardware
4?‘@

— = Hardware failure can be “fixed” by replacing a faulty .-
component with an identical one, therefore no *
reliability growth.

= Software problems can be “fixed” by changing the
code 1n order to have the failure not happen again,
therefore reliability growth is present.

» Software does not go through production phase the
same way as hardware does.

s Conclusion: hardware reliability models may not be
used 1dentically for software.

far@ucalgary.ca

=) Reliability: Science
Y /

= Exploring ways of implementing “reliability” -
in software products.

= Reliability Science’s goals:

= Developing “models” (regression and aggregation
models) and “techniques” to build reliable |
software.

= Testing such models and techniques for adequacy,
soundness and completeness. "

far@ucalgary.ca

Reliability: Engineering /1

D
Y

S0
L
(NG

= Engineering of “reliability” in software
products.

= Reliability Engineering’s goal:
developing software to reach the market

= With “minimum” development time
= With “minimum” development cost

=

s With “maximum” reliability fty,
1, bl e = : Quayie
s With “minimum” expertise needed Uality

x With “minimum” available technology

far@ucalgary.ca

111!4;

?
{ ﬂ\'b What is SRE? /1

» Software Reliability Engineering (SRE) 1s a multi-
faceted discipline covering the software product

lifecycle.

= [t involves both technical and management act1v1t1es
in three basic areas:
s Software Development and Maintenance
= Measurement and Analysis of reliability data

s Feedback of reliability information into the software
lifecycle activities.

far@ucalgary.ca 82 N~

111!4;

?
{ ﬂ\‘b What is SRE ? /2

s SRE 1s a practice for quantitatively planning and
guiding software development and test, with
emphasis on reliability and availability.

= SRE simultaneously does three things:

= [t ensures that product reliability and availability meet user
needs. E

= [t delivers the product to market faster. =
= It increases productivity, lowering product life-cycle cost. -

= In applying SRE, one can vary relative emphasis
placed on these three factors.

far@ucalgary.ca 83 e

zﬁ’@ However ...

==5 Practical implementation of an effective SRE
program 1s a non-trivial task.

s Mechanisms for collection and analysis of data on
software product and process quality must be in
place.

» Fault identification and elimination techniques must
be 1n place. E

= Other organizational abilities such as the use of
reviews and inspections, reliability based testing and -
software process improvement are also necessary for °
effective SRE. "

far@ucalgary.ca

SCHULICH %
Sefcel o egnaving
LG

iy ,{P;'/'

UNIVERS

CALG*R‘%’,E Chapter 1 Section 4

Software Reliability
Engineering (SRE) Process

far@ucalgarylca L1l ittt i1l il i iiilil :.!.:_8!5. L1l

SRE: Process /1

N
L)
NG

s There are 5 steps in | Defire Meeessers E
SRE process (for
ea Ch Sy St em tO Develop Operational Profiles T
te St) k R Prepare for Test __

= Define necessary Apply Fare —

rehablllty _: E%{Fecute Decisiong |

est -

= Develop]

operational profiles | Reauiremens Design and o '

= Prepare for test Architecture e :

= Execute test S
= Apply failure data
to guide decisions

et L P P50 ISCHULICH:

far@ucalgary.ca

—

lified version of the SRE Process

Define Product

» Implement Oper. Profile —|

P1 Eng. “Just Right” Rel.

:

Prepare for Test Execute Test
y
Guide Test |<—
Req. & Arch. Design & Imp. Test

Ref: Musa’s book 2" Ed

far@ucalgary.ca

—

@ﬁ:!b SRE: Necessary Reliability

l
— = Detine what “failure” means for the software product..

s Choose a common measure for all failure intensities, -
either failures per some natural unit or failures per
hour. %

= Set the total system failure intensity objective (FIO) -
for the software/hardware system.

= Compute a developed software FIO by subtracting

the total of the FIOs of all hardware and acquired
software components from the system FIOs.

= Use the developed software FIOs to track the
reliability growth during system test (later on).

far@ucalgary.ca 89 y@-

) Failure Intensity Objective (FIO)
|,

= Failure intensity (A) is defined as failure per natural
units (or time), e.g.

= 3 alarms per 100 hours of operation.
= 5 failures per 1000 transactions, etc.

s Failure intensity of a cascade (serial) system 1s the
sum of failure intensities for all of the components of -
the system.

= For exponential model:

Zsystem (t):ﬂ’l +/12 +”'+ﬂ“n :iﬂi
=1

I2E0 1 g
=L r

far@ucalgary.ca

o

'S

)|How to Set FIO?

= Setting FIO in terms of system reliability (R) or availability

(A):
A=

~InR or 1 = (l—R)
t t

A ﬂ -
f

A 1is failure intensity) =P R

R is reliability \ /

t 1s natural unit (time, etc.)
tm 1s downtime per failure

for R>0.95

far@ucalgary.ca

1

I —

) Reliability vs. Failure Intensity

Reliability for 1 hour Failure intensity
mission time

0.36800 1 failure / hour
0.90000 105 failure / 1000 hours
0.95900 1 failure / day
0.99000 10 failure / 1000 hours
0.99400 1 failure / week
0.99860 1 failure / month
0.99900 1 failure / 1000 hours
0.99989 1 failure / year

far@ucalgary.ca

() SRE: Operation

Lﬂ\‘

— = An operation 1s a major system logical task, which
returns control to the system when complete.

= An operation 1s a functionality together with its
input event(s) that affects the course of behavior of
software.

= Example: operations for a Web proxy server
= Connect internal users to external Web
= Email internal users to external users
= Email external users to internal users
= DNS request by internal users
s Ftc.

far@ucalgary.ca

SRE Operational Profile

An operational profile is a complete set of operations with their
probabilities of occurrence (during the operational use of the software).

= An operational profile 1s a description of the distribution of input events
that 1s expected to occur in actual software operation.

= The operational profile of the software reflects how it will be used in
practice. g

Probability
of occurrence 1

= Operational mode

5

|=00 |3&0
i 1 1 1

far@ucalgary.ca

—
Bl

. ¢ °
,SRE: System Operational Profile
I System operational profile must be developed for all of its
important operational modes.

= There are four principal steps in developing an operational
profile: |
= Identify the operation 1nitiators (1.e., user types, external systems, and
the system itself)
= List the operations invoked by each initiator
= Determine the occurrence rates

= Determine the occurrence probabilities by dividing the occurrence
rates by the total occurrence rate

far@ucalgary.ca 06 w4

1

l

?@’ SRE: Prepare for Test

— m The Prepare for Test activity uses the operational
profiles to prepare test cases and test procedures.

m Test cases are allocated 1in accordance with the
operational profile.

m Test cases are assigned to the operations by selecting
from all the possible intra-operation choices with E
equal probability.

m The test procedure is the controller that invokes test
cases during execution.

far@ucalgary.ca

) SRE: Execute Test

= Allocate test time among the associated systems and -
types of test (feature, load, regression, etc.).

= Invoke the test cases at random times, choosing
operations randomly 1n accordance with the
operational profile.

s Identify failures, along with when they occur.

= This information will be used 1n Apply Failure Data
and Guide Test. E

15 fa!)
=L r

far@ucalgary.ca

decision) an acquired component for a given target
failure intensity.

s Feature Test: A single execution of an operation
with interaction between operations minimized.

s Load Test: Testing with field use data and
accounting for interactions

s Regression Test: Feature tests after every build
involving significant change, 1.e., check whether a
bug fix worked.

e oA
[2En
|50 |80

far@ucalgary.ca

?@’ SRE: Apply Failure Data

l

= Plot each new failure as it occurs on a
reliability demonstration chart.

1

= Accept or reject software (operations) using
reliability demonstration chart.

m Track reliability growth as faults are removed.

far@ucalgary.ca

1

~ Consider releasing the product when:

1. All acquired components pass certification
test

2. Test terminated satisfactorily for all the =
product variations and components with the
A / A rratios for these variations don’t
appreciably exceed 0.5 (Confidence factor)

far@ucalgary.ca 101 g

_1 N

1

ﬁu\!' Collect Field Data

— = SRE for the software product lifecycle.

m Collect field data to use in succeeding releases either using
automatic reporting routines or manual collection, using a
random sample of field sites.

= Collect data on failure intensity and on customer satisfaction
and use this information in setting the failure intensity
objective for the next release.

= Measure operational profiles in the field and use this
information to correct the operational profiles we estimated.

m Collect information to refine the process of choosing
reliability strategies in future projects.

far@ucalgary.ca 102 g

~) Conclusions
@ﬂ'@

"= u Software Reliability Engineering (SRE) can
offer metrics and measures to help elevate a
software development organization to the 3
upper levels of software development maturity;ﬂf

= However, 1n practice effective implementation
of SRE is a non-trivial task! £

far@ucalgary.ca

How the customer
explained it

How the Project
Leader understood it

How the Analyst
designed it

How the Programmer
wirate it

How the Business
Consuttant described it

How the project
was documented

What operations
installed

How the customer
was hilled

How it was supported

What the customer
really needed

|200 |zE0
I

|00, 350

SENG521

far@ucalgary.ca

L}

|l-‘||
s lilaladial

—i0—| |
.|.|,|||.I

.:.Lﬁ—l i
| B T T A T

o T

LM
Ll

