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Abstract—Constructing Radio Environment Map (REM) ac-
curately and cost-efficiently is of great importance to realize
dynamic spectrum access. Two kinds of approaches are widely
investigated recently, i.e., radio propagation model based ap-
proaches and sensor monitoring based approaches. However,
these existing approaches are suffering from either inaccurate
spectrum availability or high deployment cost. To this end,
outsourcing the spectrum sensing task to mobile users that
are outfitted with spectrum sensors could greatly reduce the
operator’s expenditure, and meanwhile, achieve a satisfactory
accuracy. The key of crowdsourced REM construction is to
attract user participation. In this paper, we propose a novel online
incentive mechanism for constructing a fine-grained REM with
crowdsourcing in a realistic scenario, where the mobile users
arrive and leave in an online manner. The proposed mechanis-
m is proven to satisfy the truthfulness, individual rationality,
computational efficiency and consumer sovereignty. Evaluation
results demonstrate that the proposed mechanism outperforms
the baseline schemes substantially.

I. INTRODUCTION

Over the past decade, we have witnessed a 4000-fold growth

of mobile data traffic due to the tremendous increase of

various wireless devices and spectrum-hungry applications.

This skyrocketing demand of additional spectrum leads to a

surge in a need of paradigm shift from the static and exclusive

spectrum usage framework toward a dynamic spectrum sharing

framework. To this end, the concept of dynamic spectrum

access has been proposed, which allows the secondary users

access the spectrum that are underutilized by primary users.

To guarantee that there is no harmful interference to primary

users, radio environment map (REM) is widely adopted in

which the white space information is stored.

Two kinds of approaches for constructing REM have been

addressed recently, i.e., propagation model based approach and

sensor monitoring based approach. The propagation model

based approach predicts the received signal strength (RSS)

at any receiver location by taking into consideration trans-

mitter power, location, and antenna pattern, e.g., Spectrum

Bridge, Google, Keybridge, etc. This approach is easy to

implement, however, it is prone to offer inaccurate and stale

spectrum availability in many circumstances, e.g., approxi-

mately 40% − 70% of available white space is wasted in

urban area [1]. To improve the accuracy of REM, sensor

monitoring based approach proposes to deploy a large number

of dedicated sensors in regions of interest to collect spatio-

temporal spectrum data, and exploit statistical interpolation

methods such as Kriging [2] to construct the REM. However

the huge cost of such large-scale sensor deployment makes its

scalability a major problem.

A practical cost-efficient alternative is to exploit crowd-

sourcing for the sensing task [3–6], i.e., recruiting mobile

users that are outfitted with spectrum sensors. Obviously, these

spectrum sensing and reporting operations consume users’

own resources in terms of computation, battery, storage and

communication. Therefore, a core question is how to attract

users to participate. To this end, some forms of reward is

expected for the participants, either in the form of money or

resource. Incentivizing crowdsourcing for REM construction

has attracted considerable attentions recently [7–10]. Ying et
al. [7] proposed to minimize the interpolation variance for

all the spots of interest at a given budget. Gao et al. [8]

proposed a game-theoretic model based mechanism to incen-

tivize the users with additional spectrum access opportunities.

Wang et al. [9, 10] proposed incentive mechanisms for fine-

grained REM construction by taking into consideration the

heterogeneity of spots. These works [7–10] all assume the

offline scenario in which all interested users report the required

information to the operator at the same time, and the operator

selects the winners and determines the reward based on all the

collected information. However, in practice the mobile users

arrive and leave the network in an online manner, and their

availabilities change over time. Several recent studies focus

on online incentive mechanism for crowdsourcing [11, 12].

However they cannot applied to the crowdsourced REM con-

struction problem directly, due to the heterogeneity of spots’

requirements and properties of Kriging interpolation.

In this paper, we consider a practical scenario that the

operator intends to construct a fine-grained REM by out-

sourcing the sensing tasks to mobile users who arrive in an

online manner. Based on the previous research results [13],
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instead of collecting the sensing measurement uniformly, it

would be cost-efficient for the operator to only augment the

RSS at some particular spots, e.g. the spots that are prone

to have large estimation error when using propagation model

based prediction. Therefore, those spots could have distinct

quality requirements depending on their prediction accuracy.

The operator publishes the sensing task periodically, and

the mobile users arrive sequentially and show their interests

to participate by submitting their profiles to the operator.

The operator must decide immediately whether to accept or

reject this user for crowdsourcing, and decide the payment

if necessary. Once the decision is made, it is irrevocable.

The goal is to guarantee the requirements of all spots and

meanwhile minimize the total expenditure of the operator. To

this end, we propose a novel online incentive mechanism for

crowdsourced REM construction by utilizing auction model

[14, 15]. The proposed mechanism is proven to be truthful,

individual rational, computationally efficient and consumer

sovereign. We perform extensive simulations to analyze the

properties of the proposed mechanism, and demonstrate that

the proposal outperforms the baseline schemes substantially.

The rest of the paper is organized as follows. Section II

briefly introduces the used statistical interpolation method.

Section III gives the system model and problem formulation.

Section IV presents the proposed mechanism. Finally, Section

V provides the evaluation results, and Section VI concludes

this paper.

II. INTERPOLATION METHOD: KRIGING

In this section, we briefly introduce a well-known geo-

statistical interpolation technique: Kriging [2]. For radio map-

ping, Kriging uses multiple known location-specific RSS mea-

surements to predict the unknown RSS at a desired location.

We consider a 2-D field with the RSS at a point (xi, yi)

denoted by zi. Given the RSS measurements at a set of

locations N = {(x1, y1), (x2, y2), . . . , (xn, yn)}, Kriging predicts

the unknown RSS at a new location ˆ(z0) from the weighted

known RSS as

ẑ0 =

n∑

i=1

λizi, (1)

where λi is the normalized weight, i.e.,
∑n

i=1 λi = 1. The opti-

mal weights λi are determined by minimizing the estimation

variance at (x0, y0) by using the measurements at set N . By

denoting the minimized estimation variance (also called the

Kriging variance) as φ(x0,y0)(N), we have

φ(x0,y0)(N) = min
λi

Var (ẑ0 − z0). (2)

To find φ(x0,y0)(N), a key function, namely semivariogram
γi j, is introduced. γi j models the variance between two points

as a function of their distance. The theoretical semivariogram

is represented by

γi j =
1

2
E
[
(zi − z j)

2
]
. (3)

Spot

User

Operator

Fig. 1. Illustration of a REM construction system with online user
crowdsourcing.

Based on [2], the minimized Kriging variance could be ob-

tained by solving the following matrix.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ10

γ20

...
γn0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where μ is the Lagrange parameter. Obviously, to obtain the

optimal weights λi, the semivariogram γi j is required. For

the considered radio mapping scenario, γi j is estimated by

fitting a set of RSS measurements to an empirical curve, e.g.,

exponential or spherical model. φ(x0,y0)(N) represents the RSS

estimation uncertainty at an unknown location (x0, y0) by using

measurements of set N , which is used as a criterion in our

online incentive mechanism design.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Fig. 1 illustrates the REM construction system with online

user crowdsoucing. The system consists of a centralized oper-

ator (e.g., cloud server) and multiple mobile users with devices

that are outfitted with spectrum sensors. The mobile users

are connected to the operator by cellular networks or wi-fi

connections. Instead of completely replacing the propagation

model-based REM by collecting large-scale sensing results

uniformly, we consider that the help of sensor measure-

ments are only needed for augmenting partial particular spots.

Therefore, this architecture is capable of improving the REM

accuracy with only a modest sensing effort. The spots need

to be augmented could be selected based on the machine

learning based prediction [13], which is out of the scope of

this paper. The selected spots could have distinct augmenting

requirements which are quantified by Kriging variances, e.g.,

higher requirements (i.e., lower Kriging variance) for spots

with poorer prediction results. Specifically, the set of spots

that needs to be augmented is denoted by M with spot index

j. Each spot j has an individual augmenting requirement r j,

i.e., spot j’s RSS needs to be interpolated with a maximum

Kriging variance r j.



We consider a set of mobile users with index i, and each

user i knows its location (xi, yi). The mobile users arrive online

in a random manner, and each user i has an arrival time ai.

In this work, we assume an impatient user model, in which

the arrival time of each user equals his departure time. We

leave the discussions on unequal arrival-departure time model

to future work. While participating in crowdsourcing, there is

a cost ci occurring to user i, since the sensing and reporting

activities consume resources. The location, cost and arrival

information constitute the profile of user i as fi = (xi, yi, ci, ai).

Notice that the profile is a private information and thus is only

known by the user himself.

We use online auction framework to model the interactions

between the operator and mobile users. The operator is a buyer

who wants to buy sensing measurements, and the mobile users

are sellers. We consider that the operator publishes the sensing

task periodically, and the spots that need to be augmented

may change in each round. Notice that the sensing task

only contains the central frequency information, the location

information of the spots are not included in the sensing task.

When a user i arrives, it competes for the sensing task by

submitting a bidding profile f ′i = (x′i , y
′
i , bi, a′i), where x′i , y

′
i and

a′i are reported location and reported arrival time respectively,

and bi is a bid which is a price he expects. Notice that

the bidding profile (x′i , y
′
i , bi, a′i) may or may not be his real

profile (xi, yi, ci, ai). Upon receiving the bidding profile from

mobile user i, the operator needs to decide whether to buy

this measurement immediately, and at what price if so. The

operator tells user i his decision, and the accepted mobile user

reports its sensing measurement and gets paid.

B. Problem Formulation

We assume that the users are game-theoretic and intend

to maximize their utilities. For instance, they may report an

untruthful location, cost or arrival time to the operator, if he

believes this could improve his utility. The utility of user i is

defined as

ui =

⎧⎪⎨⎪⎩
pi − ci, i ∈ W
0, otherwise,

(5)

where pi is the payment that the user i received from the

operator, andW is the accepted user set. The operator expects

to accept a set of users for minimizing the total expenditure

under the augmenting requirements of all spots. Therefore, we

have
min
i∈W

ci

subject to φ j(W) ≤ r j,∀ j ∈ M.
(6)

In Eqn. (6), the constraint ensures that the augmenting re-

quirement for each spot is met, i.e., the Kriging variance at

spot j by the interpolation of the selected user set is no larger

than j’s requirement. Moreover, the designed online incentive

mechanism should satisfy the following desirable properties,

which are not imposed explicitly in the constraints in Eqn. (6).

• Truthfulness. For every user, reporting its true location,

cost and arrival time is its dominant strategy regardless

of other users’ strategies.

• Individual Rationality. The utility for any user is non-

negative.

• Computational Efficiency. The outcome of the mecha-

nism can be computed in polynomial time.

• Consumer sovereignty. For every user, there is a chance

to win the sensing task.

IV. PROPOSED ONLINE INCENTIVE MECHANISM

A. Mechanism Design

The proposed online incentive mechanism is virtually a

dynamic threshold updating process. We use a threshold θ
to judge whether or not to accept the arrived user, and

dynamically update θ based on the previous accepted user set.

We consider that the value of a user depends on two factors,

i.e., its contribution to Kriging variance and its bidding price.

To this end, we define a marginal efficient contribution of the

arrived user i as

αi(W) =
mi(W)

bi
, (7)

where bi is i’s bid, and mi(W) is i’s marginal contribution
based on the current accepted user setW. mi(W) is calculated

by

mi(W) =
∑

j∈M

max
(
φ j(W), r j

)
−max

(
φ j(W∪ {i}), r j

)

r j
, (8)

where φ j(W) and φ j(W ∪ {i}) are the Kriging variance

achieved by the accepted user set W without and with i,
respectively. Here, the Kriging variance improvements to all

the spots M are considered, and we allocate weight 1/r j to

different spots, i.e., the spot with small variance requirement

has large weight.

The proposed online mechanism is illustrated in Algorithm

1. The whole process ends if the requirements of all spots are

satisfied (line 2). When a user i arrives, for each member k
in the current accepted user set W, we construct a temporary

user set W′
k, in which k is removed from W. For all W′

k,

we calculate user i’s marginal contribution αi(W′
k) based on

Eqn. (7). And the minimum of them, α′i , is used to represent

i’s marginal contribution (lines 5 − 8). The operator accepts

user i as long as his α′i is no less than the current threshold

θ. Meanwhile, the accepted user receives a payment
α′i ·bi

θ
from

the operator and is added to the accepted user set W (lines

9 − 11). Notice that this payment is the maximum bid user

i could submit that allows it to win. To guarantee the user

sovereignty, the threshold is set to a sufficiently small value

initially, and start to update after t′ users arrived (lines 14−15).

After the user acceptance and payment determination, the spot

set M is updated. Specifically, the spots whose requirements

are satisfied by the current W are removed from M (lines

16 − 18).

The threshold update function is illustrated in Algorithm

2. After t′ users arrived, the threshold is updated as long

as accepted user set W changes. The rationale is to set the

threshold as the δ-quantiles of marginal contribution for all

members k in W, which is calculated based on user set



W′
k = W \ {k}. For instance, we could use the median

marginal contribution for all members in accepted user set

by setting δ = 0.5, or use a slight underestimated threshold

δ < 0.5 to guarantee that enough users could be accepted.

Algorithm 1: Proposed Online Mechanism

Input: Spot set M
Output: Winner set W, payment vector P

1
(
W,W′

k, α
′
i , t
′, θ
)
← (∅, ∅, 0, 5, 1);

2 while M � ∅ do
3 if a user i arrives at time slot t then
4 W′

k ← ∅;
5 forall the k ∈ W do
6 W′

k ←W \ {k};
7 αi(W′

k)← mi(W′
k)

bi
;

8 α′i = mink∈W αi(W′
k);

9 if α′i ≥ θ then
10 W←W∪ {i};
11 pi ← α′i ·bi

θ
;

12 else
13 pi ← 0;

14 if t ≥ t′ then
15 θ ← UpdateThreshold(W);

16 forall the j ∈ M do
17 if φ j(W) ≤ r j then
18 M←M\ { j};

19 t ← t + 1;

20 return W, P;

Algorithm 2: Update Threshold

Input: Winner set W
Output: Threshold θ

1 W′
k ← ∅;

2 forall the k ∈ W do
3 W′

k ←W \ {k};
4 αk(W′

k)← mk(W′
k)

bk
;

5 return θ = quantile (αk(W′
k), δ);

B. Proof of Properties

In this subsection, we prove that the proposed incentive

mechanism is truthful, individual rational, computationally

efficient and consumer sovereign.

Theorem 1: The proposed incentive mechanism is truthful.

Proof: We show that the proposed incentive mechanism

is truthful in terms of arrival time, location and cost. For

arrival time, based on the impatient user model, no user

has incentive to report an earlier or a later arrival/departure

time, since the user cannot perform sensing task and obtain

a payment in those cases. Achieving location-truthfulness is

also trivial. The user simply cannot report a false location that

is close to the augment spots, since spots’ information is not

included in the sensing task. Finally, the proposed incentive

mechanism is cost-truthful since the online algorithm is bid-

independent, i.e., the threshold is determined by historical data

and thus changing the bid could not improve user’s utility. This

completes the proof.

Theorem 2: The proposed incentive mechanism is individ-

ually rational.

Proof: Based on lines 9 − 11 in Algorithm 1, the user

receives payment pi ≥ bi if he is accepted, otherwise pi = 0

(line 13). Therefore, the utility of user is nonnegative.

Theorem 3: The proposed incentive mechanism is compu-

tationally efficient.

Proof: Computing the marginal efficient contribution

(lines 5 − 7 in Algorithm 1) and updating the threshold

(Algorithm 2) have the same complexity, which is O(NM).

Therefore, the online mechanism’s computation complexity at

each time step is bounded by O(NM).

Theorem 4: The proposed incentive mechanism is con-

sumer sovereign.

Proof: The proposed algorithm does not have a sampling

process which automatically rejects all the users arrive in this

period. On the contrary, the users arrive before t′ would be

accepted with quite high probability since the initial threshold

is set to a substantially small value. And the users arrive after t′
have the chance to be accepted as long as its marginal efficient

contribution is not less than the current threshold.

V. EVALUATION RESULTS

In this section, we evaluate the performance of the pro-

posed online mechanism, and compare it with online fix-price

scheme, offline scheme [9] and bid-based offline scheme. The

online fix-price scheme sets a static price and accepts the

arrived user as long as its bid is lower than this price. We tried

different prices and the following results show the optimal one

(impossible in practice). The offline scheme [9] is proposed

in our previous work, it minimizes the operator’s expenditure

by using all users’ information in an offline fashion. And the

bid-based offline scheme selects the users with the highest bid

repeatedly among the remaining bidders until the requirements

of all spots are satisfied. Notice that except the online fix-price

scheme, the proposed online scheme, offline scheme [9] and

bid-based offline scheme all could guarantee the truthfulness.

We consider a region with size 2000m by 2000m. The

number of spots that we try to augment varies from 5 to

30 with step 5. The augment requirements are set uniformly

distributed in [0.5, 5] above the optimal value. The number

of mobile users varies from 100 to 300 with step 50, and

their costs are uniformly distributed in range (0, 1). We use the

exponential model γi j = c(1 − e−d(i, j)/r) as the empirical semi-

variogram γi j in Kriging, with optimal parameter c = 21.15

and r = 24.99 (obtained by variogramfit function in

Matlab). The evaluation results are averaged by 50 trials with

randomly generated spots, users, requirements and costs.
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Firstly, Figs. 2 and 3 show the performance variance of the

proposed mechanism as the number of augment spots increase.

Fig. 2 shows the distribution of requirements’ achievement

ratio. Here 100% ratio indicates the Kriging variance achieved

by winning user set is exactly same as the requirement,

which is the ideal result. We could observe that when the

number of spots is larger than 20, some spots’ requirements

cannot satisfied by the given user set. And there exist some

outliers beyond 135%, which can be considered as a waste of

operator’s expenditure. The reason is that every selected user

contribute to all spots based on Kriging interpolation (instead

of a particular spot), and the achieved spots’ requirement ratio

depends on both their location and requirement value. Fig. 3

demonstrates the variance of number of winners (left y-axis)

and total payment (right y-axis). As expected, both of them

rise as the increase of number of spots.

Next, in Fig. 4, we compare the requirements’ achievement

ratio of the offline scheme [9], proposed online scheme, bid-

based offline scheme and fix-price online scheme (denoted
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Fig. 5. The performance comparison in terms of number of winners. (20
spots.)
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Fig. 6. The performance comparison in terms of total payment. (20 spots.)

as off, on, bid and fix in the figure respectively). We notice

that besides the proposed scheme in 100 users case, all the

schemes achieve the augment requirements of the spots, i.e.,

higher than 100%. And as expected, the offline scheme [9]

has the most effective augment results whose achievement

ratio is closest to 100%. For the proposed online scheme, it

outperforms the bid-based offline scheme and fix-price online

scheme (except that in the 100 users case in which the number

of users is not enough for the proposed scheme). Finally, Figs.

5 and 6 illustrate the number of winners and total payment

changing with number of users, respectively. The proposed

online scheme outperforms the bid-based offline scheme and

fix-price online scheme (untruthful and the optimal fix price

is impossible to obtain in reality), and the offline scheme [9]

(truthful but needs all information in advance) achieves the

optimal results as expected.

VI. CONCLUSIONS

In this paper, we have proposed an online incentive mech-

anism for REM construction by taking into consideration the
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dynamically arrived users. The proposed mechanism aims at

minimizing the operator’s total expenditure while guaranteeing

distinct quality requirements of spots. The simulation results

show that the proposed mechanism achieves better perfor-

mance over two baseline schemes and keeps an acceptable

gap from related offline scheme.
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